This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler uses a combination of advanced techniques to translate these policies into code that can be executed on network elements including a constraint solver that allocates bandwidth using parameterizable heuristics. To facilitate dynamic adaptation, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and scalability of Merlin on real-world topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies and scalable infrastructure for enforcing them.
This paper presents the Merlin network management framework. With Merlin, administrators express network policy using programs in a declarative language based on logical predicates and regular expressions. The Merlin compiler automatically partitions these programs into components that can be placed on a variety of devices including switches, middleboxes, and end hosts. It uses a constraint solver and parameterizable heuristics to allocate resources such as paths and bandwidth. To ease the administration of federated networks, Merlin provides mechanisms for delegating management of sub-policies to tenants, along with tools for verifying that delegated sub-policies do not violate global constraints. Overall, Merlin simplifies the task of network administration by providing high-level abstractions for directly specifying network policy.
This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler maps these policies into a constraint problem that determines bandwidth allocations using parameterizable heuristics. It then generates code that can be executed on the network elements to enforce the policies. To allow network tenants to dynamically adapt policies to their needs, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and effectiveness of Merlin on realworld topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies that provision network resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.