We investigate the conformational properties of the intrinsically disordered DNA-binding domain of CytR in the presence of the polymeric crowder polyethylene glycol (PEG). Integrating circular dichroism, nuclear magnetic resonance, and single-molecule Forster resonance energy transfer measurements, we demonstrate that disordered CytR populates a well-folded minor conformation in its native ensemble, while the unfolded ensemble collapses and folds with an increase in crowder density independent of the crowder size. Employing a statistical−mechanical model, the effective reduction in the accessible conformational space of a residue in the unfolded state is estimated to be 10% at 300 mg/mL PEG8000, relative to dilute conditions. The experimentally consistent PEG−temperature phase diagram thus constructed reveals that entropic effects can stabilize disordered CytR by 10 kJ mol −1 , driving the equilibrium toward folded conformations under physiological conditions. Our work highlights the malleable conformational landscape of CytR, the presence of a folded conformation in the disordered ensemble, and proposes a scaling relation for quantifying excluded volume effects on protein stability.
The intrinsically disordered DNA-binding domain of cytidine repressor (CytR-DBD) folds in the presence of target DNA and regulates the expression of multiple genes in E. coli. To explore the conformational rearrangements in the unbound state and the target recognition mechanisms of CytR-DBD, we carried out single-molecule Förster resonance energy transfer (smFRET) measurements. The smFRET data of CytR-DBD in the absence of DNA show one major and one minor population assignable to an expanded unfolded state and a compact folded state, respectively. The population of the folded state increases and decreases upon titration with salt and denaturant, respectively, in an apparent two-state manner. The peak FRET efficiencies of both the unfolded and folded states change continuously with denaturant concentration, demonstrating the intrinsic flexibility of the DNA-binding domain and the deviation from a strict two-state transition. Remarkably, the CytR-DBD exhibits a compact structure when bound to both the specific and nonspecific DNA; however, the peak FRET efficiencies of the two structures are slightly but consistently different. The observed conformational heterogeneity highlights the potential structural changes required for CytR to bind variably spaced operator sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.