Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds containing multiple aromatic rings formed during incomplete combustion. Since many of them are known mutagens and carcinogens, PAHs found in the particulate matter (PM) from the wildfire smoke may pose significant health risks to the wildland firefighters. It is pivotal to determine the levels of PAHs in the PM to evaluate the health effects of their inhalation exposure. However, the determination of PAHs using the conventional chromatographic approaches is often time-consuming and laborious. Herein, we describe a novel method for screening nonpolar and polar PAHs in the PM of smoke by direct analysis in real-time mass spectrometry (DART-MS). PM2.5 and PM10 samples were collected on the quartz filters with a sampling system consisting of a cascade impactor with a portable sampling pump. Various indoor and outdoor experiments from biomass burns were conducted to evaluate the PM sampling systems. PAHs were analyzed by DART-MS and gas chromatography-mass spectrometry (GC–MS) methods. The PM samples were collected in California during the wildfire season of fall 2020, and significant levels of multiple nonpolar PAHs and polar PAHs were detected. Overall, the DART-MS method has shown promising ability for high-throughput screening of PAHs in the PM of smoke. Further studies are currently under way to apply this method to study the particulate phase PAH exposures of wildland firefighters during their firefighting activities.
Due to the high cost of feedstock and catalyst in biodiesel production, the viability of the biodiesel industry has been dependent on government subsidies or tax incentives. In order to reduce the cost of production, food wastes including eggshells and oyster shells have been used to prepare calcium oxide (CaO) catalysts for the transesterification reaction of biodiesel synthesis. The shells were calcined at 1000 °C for 4 hours to obtain CaO powders which were investigated as catalysts for the transesterification of waste cooking oil. The catalysts were characterized by Fourier Transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and X-ray fluorescence (XRF) spectroscopy. Reaction parameters such as methanol-to-oil molar ratio, CaO catalyst concentration, and reaction time were evaluated and optimized for the percentage conversion of cooking oil to biodiesel esters. The oyster-based CaO showed better catalytic activity when compared to the eggshell-based CaO under the same set of reaction conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.