Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, generates multiple protein-coding, subgenomic RNAs (sgRNAs) from a longer genomic RNA, all bearing identical termini with poorly understood roles in regulating viral gene expression. Insulin and interferon-gamma, two host-derived, stress-related agents, and virus spike protein, induce binding of glutamyl-prolyl-tRNA synthetase (EPRS1), within an unconventional, tetra-aminoacyl-tRNA synthetase complex, to the sgRNA 3′-end thereby enhancing sgRNA expression. We identify an EPRS1-binding sarbecoviral pan-end activating RNA (SPEAR) element in the 3′-end of viral RNAs driving agonist-induction. Translation of another co-terminal 3′-end feature, ORF10, is necessary for SPEAR-mediated induction, independent of Orf10 protein expression. The SPEAR element enhances viral programmed ribosomal frameshifting, thereby expanding its functionality. By co-opting noncanonical activities of a family of essential host proteins, the virus establishes a post-transcriptional regulon stimulating global viral RNA translation. A SPEAR-targeting strategy markedly reduces SARS-CoV-2 titer, suggesting a pan-sarbecoviral therapeutic modality.
Arc1p is a yeast-specific tRNA-binding protein that forms a ternary complex with glutamyl-tRNA synthetase (GluRS c ) and methionyl-tRNA synthetase (MetRS) in the cytoplasm to regulate their catalytic activities and subcellular distributions. Despite Arc1p not being involved in any known biotin-dependent reaction, it is a natural target of biotin modification. Results presented herein show that biotin modification had no obvious effect on the growth-supporting activity, subcellular distribution, tRNA binding, or interactions of Arc1p with GluRS c and MetRS. Nevertheless, biotinylation of Arc1p was temperature dependent; raising the growth temperature from 30 to 37°C drastically reduced its biotinylation level. As a result, Arc1p purified from a yeast culture that had been grown overnight at 37°C was essentially biotin free. Non-biotinylated Arc1p was more heat stable, more flexible in structure, and more effective than its biotinylated counterpart in promoting glutamylation activity of the otherwise inactive GluRS c at 37°C in vitro. Our study suggests that the structure and function of Arc1p can be modulated via biotinylation in response to temperature changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.