Despite extensive research into executive function (EF), the precise relationship between brain dynamics and flexible cognition remains unknown. Using a large, publicly available dataset (189 participants), we find that functional connections measured throughout 56 minutes of resting state fMRI data comprise five distinct connectivity states. Elevated EF performance as measured outside of the scanner was associated with greater episodes of more frequently occurring connectivity states, and fewer episodes of less frequently occurring connectivity states. Frequently occurring states displayed metastable properties, where cognitive flexibility may be facilitated by attenuated correlations and greater functional connection variability. Less frequently occurring states displayed properties consistent with low arousal and low vigilance. These findings suggest that elevated EF performance may be associated with the propensity to occupy more frequently occurring brain configurations that enable cognitive flexibility, while avoiding less frequently occurring brain configurations related to low arousal/vigilance states. The current findings offer a novel framework for identifying neural processes related to individual differences in executive function.
Cardiac abnormalities are a leading cause of death and their early diagnosis are of importance for providing timely interventions. The goal of 2020 PhysioNet/CinC challenge was to develop algorithms to diagnose multiple cardiac abnormalities using 12-lead ECG data. In this work, we develop a wide and deep transformer neural network to classify each 12-lead ECG sequence into 27 cardiac abnormality classes. Our approach combines handcrafted ECG features, which were determined to be important by a random forest model, and discriminative feature representations that are automatically learned from a transformer neural network. Our entry to the 2020 Phys-ioNet/CinC challenge placed 1 st out of 41 official ranking teams (team name = prna). Using the official generalized weighted accuracy metric for evaluation, we achieved a validation score of 0.587 and top score of 0.533 on the full held-out test set.
Development and aging are associated with functional changes in the brain across the lifespan. These changes manifest in a variety of spatial and temporal features of resting state functional MRI (rs-fMRI) but have seldom been explored exhaustively. We present a comprehensive study assessing age-related changes in spatial and temporal features of blind-source separated components identified by independent vector analysis (IVA) in a cross-sectional lifespan sample (ages 6-85 years). We show that while large-scale network configurations remain consistent throughout the lifespan, changes persist in both local and global organization of these networks. We show that the spatial extent of the majority of functional networks exhibits linear decreases and both positive and negative quadratic trajectories across the lifespan. Network connectivity revealed nuanced patterns of linear and quadratic relationships with age, primarily in higher order cognitive networks. We also show divergent age-related patterns across the frequency spectrum in lower and higher frequencies. Taken together, these results point to the presence of sophisticated patterns of age-related changes that have previously not been considered collectively. We suggest that established patterns of lifespan changes in rs-fMRI features may be driven by changes in the spectral composition of BOLD signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.