An unheard mobilization of resources to find SARS-CoV-2 vaccines and therapies has been sparked by the COVID-19 pandemic. Two years ago, COVID-19’s launch propelled mRNA-based technologies into the public eye. Knowledge gained from mRNA technology used to combat COVID-19 is assisting in the creation of treatments and vaccines to treat existing illnesses and may avert pandemics in the future. Exploiting the capacity of mRNA to create therapeutic proteins to impede or treat a variety of illnesses, including cancer, is the main goal of the quickly developing, highly multidisciplinary field of biomedicine. In this review, we explore the potential of mRNA as a vaccine and therapeutic using current research findings.
Triple-negative tumors are progressively delineating their existence over the extended spectrum of breast cancers, marked by intricate molecular heterogeneity, a low overall survival rate, and an unexplored therapeutic approach. Although the basal subtype transcends the group and contributes approximately 80% to triple-negative breast cancer (TNBC) cases, the exceptionally appearing mesenchymal and luminal androgen receptor (LAR) subtypes portray an unfathomable clinical course. LAR with a distinct generic profile frequently metastasizes to regional lymph nodes and bones. This subtype is minimally affected by chemotherapy and shows the lowest pathologic complete response. The androgen receptor is the only sex steroid receptor that plays a cardinal role in the progression of breast cancers and is typically overexpressed in LAR. The partial AR antagonist bicalutamide and the next-generation AR inhibitor enzalutamide are being assessed in standard protocols for the mitigation of TNBC. There arises an inevitable need to probe into the strategies that could neutralize these androgen receptors and alleviate the trajectory of concerning cancer. This paper thus focuses on reviewing literature that provides insights into the anti-androgenic elements against LAR typical TNBC that could pave the way for clinical advancements in this dynamic sphere of oncology.
BackgroundHepatocellular carcinoma (HCC) is a leading cause of cancer‐related death worldwide. The incidence of HCC is affected by genetic and non‐genetic factors. Genetically, mutations in the genes, tumor protein P53 (TP53), catenin beta 1 (CTNNB1), AT‐rich interaction domain 1A (ARIC1A), cyclin dependent kinase inhibitor 2A (CDKN2A), mannose 6‐phosphate (M6P), smooth muscle action against decapentaplegic (SMAD2), retinoblastoma gene (RB1), cyclin D, antigen presenting cells (APC), AXIN1, and E‐cadherin, have been shown to contribute to the occurrence of HCC. Non‐genetic factors, including alcohol consumption, exposure to aflatoxin, age, gender, presence of hepatitis B (HBV), hepatitis C (HCV), and non‐alcoholic fatty liver disease (NAFLD), increase the risk of HCC.Recent FindingsThe severity of the disease and its occurrence vary based on geographical location. Furthermore, men and minorities have been shown to be disproportionately affected by HCC, compared with women and non‐minorities. Ethnicity has been reported to significantly affect tumorigenesis and clinical outcomes in patients diagnosed with HCC. Generally, differences in gene expression and/or the presence of comorbid medical diseases affect or influence the progression of HCC. Non‐Caucasian HCC patients are significantly more likely to have poorer survival outcomes, compared to their Caucasian counterparts. Finally, there are a number of factors that contribute to the success rate of treatments for HCC.ConclusionAssessment and treatment of HCC must be consistent using evidence‐based guidelines and standardized outcomes, as well as international clinical practice guidelines for global consensus. Standardizing the assessment approach and method will enable comparison and improvement of liver cancer research through collaboration between researchers, healthcare providers, and advocacy groups. In this review, we will focus on discussing epidemiological factors that result in deviations and changes in treatment approaches for HCC.
Triple negative breast cancer (TNBC) portraying deficient expression of estrogen receptor (ER), progesterone receptor (PR) and Human epidermal growth factor receptor 2 (HER2) is known to be the most aggressive subtype associated with poor prognosis and interventional strategies limited to chemotherapy and breast conserving surgery. Some TNBC incidences have also been reported with positive circ-HER2 expression thus rendering circ-HER2 a potential immunotherapy target to direct drug development. Resistance and recurrence reported with traditional approaches has led us towards the application of immunotherapeutic interventions owing to their anti-tumor efficacy. This review provides an elaborative insight on potential molecular biomarkers to be targeted by immunotherapy. Additionally, clinical trials proposing the application of immunotherapy in neoadjuvant, adjuvant and metastatic TNBC setting have also been included. The gathered evidence indicates a positive application of immunotherapy in TNBC with therapeutic limitation available only owing to the possibility of adverse events which can be dealt considering risk-to-benefit ratio. Furthermore, potential targets to aim for therapeutic vaccines along with evidence from clinical trials have also been mentioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.