We have previously shown that overexpression of focal adhesion kinase (FAK) in Chinese hamster ovary (CHO) cells promoted their migration on fibronectin. This effect was dependent on the phosphorylation of FAK at Tyr-397. This residue was known to serve as a binding site for both Src and phosphatidylinositol 3-kinase (PI3K), implying that either one or both are required for FAK to promote cell migration. In this study, we have examined the role of PI3K in FAK-promoted cell migration. We have demonstrated that the PI3K inhibitors, wortmannin and LY294002, were able to inhibit FAK-promoted migration in a dose-dependent manner. Furthermore, a FAK mutant capable of binding Src but not PI3K was generated by a substitution of Asp residue 395 with Ala. When overexpressed in CHO cells, this differential binding mutant failed to promote cell migration although its association with Src was retained. Together, these results strongly suggest that PI3K binding is required for FAK to promote cell migration and that the binding of Src and p130Cas to FAK may not be sufficient for this event.
Focal adhesion kinase (FAK) has been implicated to play a critical role in integrin-mediated control of cell behavior. However, it is unclear whether FAK also participates in the regulation of growth factor-elicited cellular functions. In this study, we have demonstrated that although overexpression of FAK in Madin-Dardy canine kidney cells did not alter their growth property or ability to form tubules within collagen gel upon hepatocyte growth factor (HGF) stimulation, it apparently enhanced HGF-induced cell scattering. This enhancement was largely because of an increase in the third phase (i.e. cell migration) of cell scattering rather than the first two phases (i.e. cell spreading and cell-cell dissociation). Conversely, the expression of FAK-related nonkinase significantly (ϳ60%) inhibited HGF-induced cell migration. Moreover, we have found that the effect of FAK on promoting HGF-induced cell motility was greatly dependent on cell-matrix interactions. We showed that HGF treatment selectively increased the expression of integrins ␣ 2 and, to a lesser extent, ␣ 3 in Madin-Dardy canine kidney cells and that a monoclonal antibody against integrin ␣ 2 efficiently blocked HGFenhanced cell migration on collagen. In our efforts to determine the mechanism by which FAK promotes HGFinduced cell migration, we found that FAK mutants deficient in phosphatidylinositol 3-kinase or p130Cas binding failed to promote HGF-induced cell migration. Interestingly, cells expressing a FAK mutant defective in Grb2 binding exhibited a rate of migration ϳ50% lower than that of cells expressing wild type FAK in response to HGF stimulation. Taken together, our results suggest a link between HGF-increased integrin expression, FAK activation, and enhanced cell motility and implicate a role for FAK in the facilitation of growth factor-induced cell motility.
Aeromonads possess an array of virulence factors and are causative agents of a number of human infections. Among them, genes of one cytotoxic (Act) and two cytotonic (Alt, Ast) enterotoxins are implicated in a human diarrheal disease. A rapid, specific, simultaneous detection of these enterotoxin genes in suspected food poisoning samples is not yet reported. Hence, a multiplex PCR assay was designed to amplify the cytotoxic (act), heat-labile cytotonic (alt), and heat-stable cytotonic (ast) enterotoxin genes of aeromonads. The PCR assay was tested with 133 Aeromonas spp. isolated from suspect food poisoning samples and retail samples of poultry and fish from wet markets in and around Taipei, Northern Taiwan. The Aeromonas spp. isolates were divided into six genotypes based on absence or presence of one or more enterotoxin genes. Of these 133 isolates, Aeromonas caviae (52.5%) and Aeromonas hydrophila (43.4%) were the most frequently isolated species from food poisoning samples and retail samples, respectively. Among the species, A. hydrophila had a significantly higher proportion for harboring three enterotoxin genes than had the others, whereas Aeromonas encheleia, considered a nonpathogen, was found harboring three enterotoxin genes. The multiplex PCR assays are rapid and specific, and provide a useful tool for the detection and genotyping of enterotoxin genes of aeromonads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.