It has been suggested that microRNAs (miRs) are involved in the immune regulation of periodontitis. However, it is unclear whether and how miRs regulate the function of B cells in the context of periodontitis. This study is to explore the role of miR-146a on the inflammatory cytokine production of B cells challenged by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). Primary B cells were harvested from mouse spleen. Quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of inflammatory cytokines in B cells in the presence or absence of P. gingivalis LPS and/or miR-146a. Bioinformatics, luciferase reporter assay and overexpression assay were used to explore the binding target of miR-146a. Our results showed that miR-146a level in B cells was elevated by P. gingivalis LPS stimulation, and the mRNA expressions of interleukin (IL)-1β, 6 and 10, and IL-1 receptor associated kinase-1 (IRAK1), but not TNF receptor associated factor 6 (TRAF6), were also upregulated. The expression levels of IL-1β, 6, 10 and IRAK1 were reduced in the presence of miR-146a mimic, but were elevated by the addition of miR-146a inhibitor. MiR-146a could bind with IRAK1 3' untranslated region (UTR) but not TRAF6 3'-UTR. Overexpression of IRAK1 reversed the inhibitory effects of miR-146a on IL-1β, 6 and 10. In summary, miR-146a inhibits inflammatory cytokine production in B cells through directly targeting IRAK1, suggesting a regulatory role of miR-146a in B cell-mediated periodontal inflammation.
Background: Next generation of coating materials on the surface of implants is designed with a paradigm shift from an inert material to an osteoimmunomodulatory material. Regulating immune response to biomedical implants through influencing the polarization of macrophage has been proven to be an effective strategy. Methods: Through anodization and hydrothermal treatment, magnesium ion incorporated TiO 2 nanotube array (MgN) coating was fabricated on the surface of titanium and it is hypothesized that it has osteoimmunomodulatory properties. To verify this assumption, systematic studies were carried out by in vitro and in vivo experiments. Results: Mg ion release behavior results showed that MgN coating was successfully fabricated on the surface of titanium using anodization and hydrothermal technology. Scanning electron microscopy (SEM) images showed the morphology of the MgN coating on the titanium. The expression of inflammation-related genes (IL-6, IL-1β, TNF-α) was downregulated in MgN group compared with TiO 2 nanotube (NT) and blank Ti groups, but anti-inflammatory genes (IL-10 and IL-1ra) were remarkably upregulated in the MgN group. The in vitro and in vivo results demonstrated that MgN coating influenced macrophage polarization toward the M2 phenotype compared with NT and blank-Ti groups, which enhanced osteogenic differentiation of rat bone mesenchymal stem cells rBMSCs in conditioned media (CM) generated by macrophages. Conclusion: MgN coating on the titanium endowed the surface with immune-regulatory features and exerted an advantageous effect on osteogenesis, thereby providing excellent strategies for the surface modification of biomedical implants.
Background:The present study was to determine the role of Toll-like receptor 4 (TLR4) signaling in inflammation and alveolar bone resorption using a murine model of Porphyromonas gingivalis-associated ligature-induced peri-implantitis. Methods:Smooth surface titanium implants were placed in the left maxilla alveolar bone 6 weeks after extraction of first and second molars in Wild-type (WT) and TLR4 −/− (TLR4 KO) mice. Silk ligatures immersed with P. gingivalis were tied around the implants 4 weeks after the implant placement and confirmation of osteointegration. Two weeks after the ligation, bone resorption, osteoclastogenesis, cellular inflammatory responses, and gingival mRNA expression levels of cytokines were assessed by micro-computed tomography, tartrate-resistant acid phosphatase (TRAP) staining, immunobiological examination and Real-time quantitative polymerase chain reaction, respectively. Results:In both WT and TLR4 KO mice, the bone resorption around implants was significantly increased in the P. gingivalis/ligation group compared with control group. In P. gingivalis/ligation group, the levels of bone resorption, TRAP+ cell formation, and gingival CD3+ and CD45+ cell infiltration were significantly decreased in TLR4 KO mice compared with that in WT mice. Receptor activator of nuclear factor-kappa B ligand /osteoprotegerin (RANKL/OPG) ratio was significantly increased after P. gingivalis/ligation treatment in WT mice not in TLR4 KO mice. When comparing the P. gingivalis/ligation group with the respective control group, gingival mRNA expressions of IL-1 , IFN-, and 1L-17 were significantly increased in TLR4 KO mice. Conclusion:This study suggests that TLR4 mediates alveolar bone resorption in P. gingivalis associated ligature-induced peri-implantitis through regulation of immune B cell infiltration, RANKL/OPG expression ratio, and differential inflammatory cytokine production. K E Y W O R D Sbone resorption, peri-implantitis, TLR4 J Periodontol. 2020;91:671-682.
Bone infection results in a complex inflammatory response and bone destruction. A broad spectrum of bacterial species has been involved for jaw osteomyelitis, hematogenous osteomyelitis, vertebral osteomyelitis or diabetes mellitus, such as Staphylococcus aureus (S. aureus), coagulase-negative Staphylococcus species, and aerobic gram-negative bacilli. S. aureus is the major pathogenic bacterium for osteomyelitis, which results in a complex inflammatory response and bone destruction. Although various antibiotics have been applied for bone infection, the emergence of drug resistance and biofilm formation significantly decrease the effectiveness of those agents. In combination with gram-positive aerobes, gram-negative aerobes and anaerobes functionally equivalent pathogroups interact synergistically, developing as pathogenic biofilms and causing recurrent infections. The adhesion of biofilms to bone promotes bone destruction and protects bacteria from antimicrobial agent stress and host immune system infiltration. Moreover, bone is characterized by low permeability and reduced blood flow, further hindering the therapeutic effect for bone infections. To minimize systemic toxicity and enhance antibacterial effectiveness, therapeutic strategies targeting on biofilm and bone infection can serve as a promising modality. Herein, we focus on biofilm and bone infection eradication with targeting therapeutic strategies. We summarize recent targeting moieties on biofilm and bone infection with peptide-, nucleic acid-, bacteriophage-, CaP- and turnover homeostasis-based strategies. The antibacterial and antibiofilm mechanisms of those therapeutic strategies include increasing antibacterial agents’ accumulation by bone specific affinity, specific recognition of phage-bacteria, inhibition biofilm formation in transcription level. As chronic inflammation induced by infection can trigger osteoclast activation and inhibit osteoblast functioning, we additionally expand the potential applications of turnover homeostasis-based therapeutic strategies on biofilm or infection related immunity homeostasis for host-bacteria. Based on this review, we expect to provide useful insights of targeting therapeutic efficacy for biofilm and bone infection eradication.
The cyclic resistance of ProTaper Universal (size 25/08) and ProTaper Next (size 25/06) instruments was compared in artificial canals with different curvatures in this study. A total of 30 ProTaper Universal and 30 ProTaper Next instruments were divided into 6 groups (n = 10) and were operated into artificial canals with 3 different angles of curvature (45°, 60°, 90°). The canal length was kept consistent in this study. The number of cycles to fracture (NCF) was counted until file fracture occurred, at which point, the length of the fragment was measured. The data were analyzed statistically using ANOVA complemented by the Tukey test (p < 0.05). Cross sections of the fractured files were scanned by an electron microscope. In the fatigue test, the ProTaper Next displayed more resistance in 45° and 60° canals (p < 0.05), whereas ProTaper Universal exhibited a better operability in 90° canals (p < 0.05). The average length of the fragments from ProTaper Next was significantly shorter than that from ProTaper Universal in 90° canals (p < 0.05). The cross sections of the fractured surfaces became flatter when the curvature angles decreased from 90° to 45°. ProTaper Next was more reliable when shaping in curved canals, whereas ProTaper Universal was more sui for the preparation of root canals with severe curvatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.