Artificial intelligence (AI) has invaded our daily lives, and in the last decade, there have been very promising applications of AI in the field of medicine, including medical imaging, in vitro diagnosis, intelligent rehabilitation, and prognosis. Breast cancer is one of the common malignant tumors in women and seriously threatens women’s physical and mental health. Early screening for breast cancer via mammography, ultrasound and magnetic resonance imaging (MRI) can significantly improve the prognosis of patients. AI has shown excellent performance in image recognition tasks and has been widely studied in breast cancer screening. This paper introduces the background of AI and its application in breast medical imaging (mammography, ultrasound and MRI), such as in the identification, segmentation and classification of lesions; breast density assessment; and breast cancer risk assessment. In addition, we also discuss the challenges and future perspectives of the application of AI in medical imaging of the breast.
Objective To investigate the value of gray-scale ultrasound (US) image histogram in the differential diagnosis between small (≤2.00 cm), oval, or round triple negative breast invasive ductal carcinoma (TN-IDC) and fibroadenoma (FA). Methods Fifty-five cases of triple negative breast invasive ductal carcinoma (TN-IDC group) and 57 cases of breast fibroadenoma (FA group) confirmed by pathology in Hubei cancer hospital from September 2017 to September 2021 were analyzed retrospectively. The gray-scale US images were analyzed by histogram analysis method, from which some parameters (including mean, variance, skewness, kurtosis and 1st, 10th, 50th, 90th and 99th percentile) can be obtained. Intraclass correlation coefficient (ICC) was used to evaluate the inter observer reliability of histogram parameters. Histogram parameters between the TN-IDC and FA groups were compared using independent Student’s t -test or Mann-Whitney U -test, respectively. In addition, the receiver operating characteristic (ROC) curve analysis was used for the significant parameters to calculate the differential diagnosis efficiency. Results All the histogram parameters showed excellent inter-reader consistency, with the ICC values ranged from 0.883 to 0.999. The mean value, 1st, 10th, 50th, 90th and 99th percentiles of TN-IDC group were significantly lower than those of FA group (P < 0.05). The area under ROC curve (AUC) values of mean and n percentiles were from 0.807 to 0.848. However, there were no significant differences in variance, skewness and kurtosis between the two groups (P > 0.05). Conclusion Histogram analysis of gray-scale US images can well distinguish small, oval, or round TN-IDC from FA.
PurposeThe aim of this study was to develop a radiomics nomogram based on grayscale ultrasound (US) for preoperatively predicting Lymphovascular invasion (LVI) in patients with pathologically confirmed T1 (pT1) breast invasive ductal carcinoma (IDC).MethodsOne hundred and ninety-two patients with pT1 IDC between September 2020 and August 2022 were analyzed retrospectively. Study population was randomly divided in a 7: 3 ratio into a training dataset of 134 patients (37 patients with LVI-positive) and a validation dataset of 58 patients (19 patients with LVI-positive). Clinical information and conventional US (CUS) features (called clinic_CUS features) were recorded and evaluated to predict LVI. In the training dataset, independent predictors of clinic_CUS features were obtained by univariate and multivariate logistic regression analyses and incorporated into a clinic_CUS prediction model. In addition, radiomics features were extracted from the grayscale US images, and the radiomics score (Radscore) was constructed after radiomics feature selection. Subsequent multivariate logistic regression analysis was also performed for Radscore and the independent predictors of clinic_CUS features, and a radiomics nomogram was developed. The performance of the nomogram model was evaluated via its discrimination, calibration, and clinical usefulness.ResultsThe US reported axillary lymph node metastasis (LNM) (US_LNM) status and tumor margin were determined as independent risk factors, which were combined for the construction of clinic_CUS prediction model for LVI in pT1 IDC. Moreover, tumor margin, US_LNM status and Radscore were independent predictors, incorporated as the radiomics nomogram model, which achieved a superior discrimination to the clinic_CUS model in the training dataset (AUC: 0.849 vs. 0.747; P < 0.001) and validation dataset (AUC: 0.854 vs. 0.713; P = 0.001). Calibration curve for the radiomic nomogram showed good concordance between predicted and actual probability. Furthermore, decision curve analysis (DCA) confirmed that the radiomics nomogram had higher clinical net benefit than the clinic_CUS model.ConclusionThe US-based radiomics nomogram, incorporating tumor margin, US_LNM status and Radscore, showed a satisfactory preoperative prediction of LVI in pT1 IDC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.