Unplanned patient readmission (UPRA) is frequent and costly in healthcare settings. No indicators during hospitalization have been suggested to clinicians as useful for identifying patients at high risk of UPRA. This study aimed to create a prediction model for the early detection of 14-day UPRA of patients with pneumonia. We downloaded the data of patients with pneumonia as the primary disease (e.g., ICD-10:J12*-J18*) at three hospitals in Taiwan from 2016 to 2018. A total of 21,892 cases (1208 (6%) for UPRA) were collected. Two models, namely, artificial neural network (ANN) and convolutional neural network (CNN), were compared using the training (n = 15,324; ≅70%) and test (n = 6568; ≅30%) sets to verify the model accuracy. An app was developed for the prediction and classification of UPRA. We observed that (i) the 17 feature variables extracted in this study yielded a high area under the receiver operating characteristic curve of 0.75 using the ANN model and that (ii) the ANN exhibited better AUC (0.73) than the CNN (0.50), and (iii) a ready and available app for predicting UHA was developed. The app could help clinicians predict UPRA of patients with pneumonia at an early stage and enable them to formulate preparedness plans near or after patient discharge from hospitalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.