BackgroundLeft atrial enlargement (LAE) is associated with cardiovascular events. Machine learning for ECG parameters to predict LAE has been performed in middle- and old-aged individuals but has not been performed in young adults.MethodsIn a sample of 2,206 male adults aged 17–43 years, three machine learning classifiers, multilayer perceptron (MLP), logistic regression (LR), and support vector machine (SVM) for 26 ECG features with or without 6 biological features (age, body height, body weight, waist circumference, and systolic and diastolic blood pressure) were compared with the P wave duration of lead II, the traditional ECG criterion for LAE. The definition of LAE is based on an echocardiographic left atrial dimension > 4 cm in the parasternal long axis window.ResultsThe greatest area under the receiver operating characteristic curve is present in machine learning of the SVM for ECG only (77.87%) and of the MLP for all biological and ECG features (81.01%), both of which are superior to the P wave duration (62.19%). If the sensitivity is fixed to 70–75%, the specificity of the SVM for ECG only is up to 72.4%, and that of the MLP for all biological and ECG features is increased to 81.1%, both of which are higher than 48.8% by the P wave duration.ConclusionsThis study suggests that machine learning is a reliable method for ECG and biological features to predict LAE in young adults. The proposed MLP, LR, and SVM methods provide early detection of LAE in young adults and are helpful to take preventive action on cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.