Deep learning of fundus photograph has emerged as a practical and cost-effective technique for automatic screening and diagnosis of severer diabetic retinopathy (DR). The entropy image of luminance of fundus photograph has been demonstrated to increase the detection performance for referable DR using a convolutional neural network- (CNN-) based system. In this paper, the entropy image computed by using the green component of fundus photograph is proposed. In addition, image enhancement by unsharp masking (UM) is utilized for preprocessing before calculating the entropy images. The bichannel CNN incorporating the features of both the entropy images of the gray level and the green component preprocessed by UM is also proposed to improve the detection performance of referable DR by deep learning.
Under microgravity, LFs showed a higher proportion of MSC characteristics and were easily induced into different linage cells. Culture in a microgravity environment may allow harvesting a greater number of MSC-like LFs for stem cell therapy in ocular surface reconstruction.
Background Doctors can detect symptoms of diabetic retinopathy (DR) early by using retinal ophthalmoscopy, and they can improve diagnostic efficiency with the assistance of deep learning to select treatments and support personnel workflow. Conventionally, most deep learning methods for DR diagnosis categorize retinal ophthalmoscopy images into training and validation data sets according to the 80/20 rule, and they use the synthetic minority oversampling technique (SMOTE) in data processing (e.g., rotating, scaling, and translating training images) to increase the number of training samples. Oversampling training may lead to overfitting of the training model. Therefore, untrained or unverified images can yield erroneous predictions. Although the accuracy of prediction results is 90%–99%, this overfitting of training data may distort training module variables. Results This study uses a 2-stage training method to solve the overfitting problem. In the training phase, to build the model, the Learning module 1 used to identify the DR and no-DR. The Learning module 2 on SMOTE synthetic datasets to identify the mild-NPDR, moderate NPDR, severe NPDR and proliferative DR classification. These two modules also used early stopping and data dividing methods to reduce overfitting by oversampling. In the test phase, we use the DIARETDB0, DIARETDB1, eOphtha, MESSIDOR, and DRIVE datasets to evaluate the performance of the training network. The prediction accuracy achieved to 85.38%, 84.27%, 85.75%, 86.73%, and 92.5%. Conclusions Based on the experiment, a general deep learning model for detecting DR was developed, and it could be used with all DR databases. We provided a simple method of addressing the imbalance of DR databases, and this method can be used with other medical images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.