Abstract. Aberrant expression of the miR-129 family has been found in several types of cancer, yet its expression and potential biologic role in breast cancer remain largely unknown. In the present study, we found that miR-129-2 was consistently downregulated in the breast cancer specimens and cell lines. Overexpression of miR-129-2-3p markedly suppressed breast cancer cell proliferation and induced its apoptosis. In addition, a luciferase reporter assay revealed that miR-129-2-3p suppressed BCL2L2 expression. Furthermore, BCL2L2 was able to reverse miR-129-2-3p-mediated cell apoptosis, indicating that BCL2L2 plays a crucial role in mediating the tumor-suppressive role of miR-129-2-3p. Moreover, bisulfite DNA sequencing PCR (BSP) analysis identified that promoter hypermethylation was responsible for the downregulation of miR-129-2 in breast cancer. Collectively, our findings indicate that miR-129-2 is downregulated in breast cancer cells by promoter hypermethylation. Moreover, downregulation of miR-129-2 results in BCL2L2 overexpression and disease progression in breast cancer patients.
BackgroundIt is unclear to what extent uremic toxins participate in inflammatory responses and the activities of deiodinases, as well as the effects of deiodinases on inflammatory cytokines.Materials and methodsHepatocellular carcinoma cell lines (HepG2) were transfected with small interfering ribonucleic acid (siRNA) specific for deiodinase type 1 (DIO1) and cultured with or without uremic toxins. The mRNA expression of DIO1, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was detected by quantitative real-time PCR. The presence of selenoprotein M (SelM) and DIO1 was assessed by western blotting. Sonicate deiodinase activities in HepG2 cells were measured by a dithiothreitol-stimulated assay. The NF-κB, AP-1 and CREB-1 inflammatory signal pathways were confirmed by EMSA.ResultsAfter culturing for 24 h, the mRNA expression of DIO1 was significantly decreased by the specific siRNA (reduced by 76%, P = 0.0002). Uremic toxins significantly increased the mRNA expression (P < 0.01) of IL-1β, IL-6 and TNF-α and inhibited DIO1 mRNA expression (P < 0.01) compared with controls. Suppression of DIO1 by siRNA significantly decreased the mRNA expression of IL-1β and IL-6 (P < 0.05) but not TNF-α (P = 0.093). Uremic toxins and specific siRNA synchronously reduced the protein expression of SelM and DIO1.ConclusionsUremic toxins activate the expression of inflammatory cytokines. The major findings of this study indicate that the uremic toxins, more than inflammatory cytokines, play direct inhibitory roles in DIO1 enzyme activity, which then provides a negative feedback to the growing accumulation of inflammatory cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.