Genome sequencing has revealed that fungi have the ability to synthesize many more natural products (NPs) than are currently known, but methods for obtaining suitable expression of NPs have been inadequate. We have developed a successful strategy that bypasses normal regulatory mechanisms. By efficient gene targeting, we have replaced, en masse, the promoters of non-reducing polyketide synthase (NR-PKS) genes, key genes in NP biosynthetic pathways and other genes necessary for NR-PKS product formation or release. This has allowed us to determine the products of eight NR-PKSs of A. nidulans, including seven novel compounds, as well as the NR-PKS genes required for the synthesis of the toxins, alternariol (8) and cichorine (19).
Fungal secondary metabolites (SMs) are an important source of medically valuable compounds. Genome projects have revealed that fungi have many SM biosynthetic gene clusters that are not normally expressed. To access these potentially valuable, cryptic clusters, we have developed a heterologous expression system in Aspergillus nidulans. We have developed an efficient system for amplifying genes from a target fungus, placing them under control of a regulatable promoter, transferring them into A. nidulans and expressing them. We have validated this system by expressing non-reducing polyketide synthases of Aspergillus terreus and additional genes required for compound production and release. We have obtained compound production and release from six of these NR-PKSs and have identified the products. To demonstrate that the procedure allows transfer and expression of entire secondary metabolite biosynthetic pathways, we have expressed all the genes of a silent A. terreus cluster and demonstrate that it produces asperfuranone. Further, by expressing the genes of this pathway in various combinations, we have clarified the asperfuranone biosynthetic pathway. We have also developed procedures for deleting entire A. nidulans SM clusters. This allows us to remove clusters that might interfere with analyses of heterologously expressed genes and to eliminate unwanted toxins.
Secondary metabolites from microorganisms have a broad spectrum of applications, particularly in therapeutics. The growing number of sequenced microbial genomes has revealed a remarkably large number of natural product biosynthetic clusters for which the products are still unknown. These cryptic clusters are potentially a treasure house of medically useful compounds. The recent development of new methodologies has made it possible to begin unlock this treasure house, to discover new natural products and determine their biosynthesis pathways. This review will highlight some of the most recent strategies to activate silent biosynthetic gene clusters and to elucidate of their corresponding products and pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.