In recent years, automatic facial analysis has attracted much interest among computer science researchers in the healthcare and computer vision fields studying facial anthropometric measurements using photographs. However, to date, there have been no healthcare or computer vision publications that use standardized photographs to differentiate features between sub-ethnic groups by leveraging the power of machine learning on two-dimensional computer vision benchmark data sets (2D CVBDs). Thus, the present work is an interdisciplinary study at the interface of healthcare and computer vision fields that attempts to fill this literature gap where we explore the use of machine learning on 2,789 photographs from eleven 2D CVBDs to identify k top discriminative features in major and sub-ethnic groups. These features are ranked based on information gain values and p-values. We also provide a comprehensive analysis of using information-gain-based and p-value-based features. Our machine learning model achieves an accuracy of 96-99%, and our findings reveal that information-gain-based features have the upper hand over p-valuebased features. The top three information-gain-based features in sub-ethnic groups are: dn (distance from the tip of the nose to the center of the mouth), hf (face height) and wn (nose width), while the top three information-gain-based features in major ethnic groups are: de (distance between the inner corners of the eyelids), hf and dn. These results are then compared to the results obtained using standard deep learning techniques such as OxfordNet (VGG16), Residual Networks (ResNet50), and Inception-V3, where accuracy of 90-94% was seen. We hope that these findings will lead to future collaboration between computer vision and healthcare researchers studying facial anthropometric measurement studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.