Guided tissue/bone regeneration (GTR/GBR) is currently the main treatment for alveolar bone regeneration. The commonly used barrier membranes in GTR/GBR are collagen membranes from mammals such as porcine or cattle. Fish collagen is being explored as a potential substitute for mammalian collagen due to its low cost, no zoonotic risk, and lack of religious constraints. Fish scale is a multi-layer natural collagen composite with high mechanical strength, but its biomedical application is limited due to the low denaturation temperature of fish collagen. In this study, a fish scale collagen membrane with a high denaturation temperature of 79.5 °C was prepared using an improved method based on preserving the basic shape of fish scales. The fish scale collagen membrane was mainly composed of type I collagen and hydroxyapatite, in which the weight ratios of water, organic matter, and inorganic matter were 20.7%, 56.9%, and 22.4%, respectively. Compared to the Bio-Gide® membrane (BG) commonly used in the GTR/GBR, fish scale collagen membrane showed good cytocompatibility and could promote late osteogenic differentiation of cells. In conclusion, the collagen membrane prepared from fish scales had good thermal stability, cytocompatibility, and osteogenic activity, which showed potential for bone tissue engineering applications.
The oral cavity harbors approximately 1,000 microbial species, and both pathogenic and commensal strains are involved in the development of carcinogenesis by stimulating chronic inflammation, affecting cell proliferation, and inhibiting cell apoptosis. Moreover, some substances produced by oral bacteria can also act in a carcinogenic manner. The link between oral microbiota and chronic inflammation as well as cell proliferation has been well established. Recently, increasing evidence has indicated the association of the oral microbiota with cell migration, which is crucial in regulating devastating diseases such as cancer. For instance, increased cell migration induced the spread of highly malignant cancer cells. Due to advanced technologies, the mechanistic understanding of cell migration in carcinogenesis and cancer metastasis is undergoing rapid progress. Thus, this review addressed the complexities of cell migration in carcinogenesis and cancer metastasis. We also integrate recent findings on the molecular mechanisms by which the oral microbiota regulates cell migration, with emphasis on the effect of the oral microbiota on adhesion, polarization, and guidance. Finally, we also highlight critical techniques, such as intravital microscopy and superresolution microscopy, for studies in this field.
Lipoxin A4 (LXA4) has been identified as the braking signal of inflammation, but the specific role of LXA4 in regulating the regenerative potential of periodontal ligament stem cells (PDLSCs) remains unclear. The aim of this study was to investigate whether and, if so, how LXA4 improves the osteogenic differentiation of PDLSCs in a lipopolysaccharide (LPS)-induced inflammatory environment. We detected the effects of LXA4 on the osteogenic differentiation of PDLSCs in vitro and explored the bone regenerative potential of LXA4-treated inflammatory PDLSCs in vivo using a calvarial critical sized defect model in male rats. RNA sequencing, real-time PCR and western blot were performed to elucidate the relevant potential mechanisms. Results showed that LXA4 promoted the proliferation, migration and osteogenic differentiation of PDLSCs in vitro, and effectively improved the impaired osteogenic capacity of PDLSCs induced by LPS both in vitro and in vivo. Mechanistically, LXA4 significantly promoted the PI3K/AKT phosphorylation under inflammatory conditions. Additionally, LY294002 (a PI3K inhibitor) blocked the effect of LXA4, suggesting that the PI3K/AKT pathway is a key signaling pathway that mediates the effect of LXA4 on the osteogenesis of inflammatory PDLSCs. These findings indicate LXA4 may be a promising strategy for periodontal regeneration using inflammatory PDLSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.