Objective The role of receptors for endogenous metabolic danger signals-associated molecular patterns (DAMPs) has been characterized recently as bridging innate immune sensory systems for DAMPs to initiation of inflammation in bone marrow-derived cells such as macrophages. However, it remains unknown whether endothelial cells (ECs), the cell type with the largest numbers and the first vessel cell type exposed to circulating DAMPs in the blood, can sense hyperlipidemia. This report determined whether caspase-1 plays a role in ECs in sensing hyperlipidemia and promoting EC activation. Approach and Results Using biochemical, immunological, pathological and bone marrow transplantation methods together with the generation of new apoplipoprotein E (ApoE)−/−/caspase-1−/− double knock-out mice we made the following observations: 1) early hyperlipidemia induced caspase-1 activation in ApoE−/− mouse aorta; 2) caspase-1−/−/ApoE−/− mice attenuated early atherosclerosis; 3) caspase-1−/−/ApoE−/− mice had decreased aortic expression of pro-inflammatory cytokines and attenuated aortic monocyte recruitment; and 4) caspase-1−/−/ApoE−/− mice had decreased EC activation including reduced adhesion molecule expression and cytokine secretion. Mechanistically, oxidized lipids activated caspase-1 and promoted pyroptosis in ECs by a ROS mechanism. Caspase-1 inhibition resulted in accumulation of sirtuin 1 (Sirt1) in the ApoE−/− aorta, and Sirt1 inhibited caspase-1 upregulated genes via activator protein-1 (AP-1) pathway. Conclusions Our results demonstrate for the first time that early hyperlipidemia promotes EC activation before monocyte recruitment via a caspase-1-Sirt1-AP-1 pathway, which provides an important insight into the development of novel therapeutics for blocking caspase-1 activation as early intervention of metabolic cardiovascular diseases and inflammations.
During sepsis, acute lung injury (ALI) results from activation of innate immune cells and endothelial cells by endotoxins, leading to systemic inflammation through proinflammatory cytokine overproduction, oxidative stress, and intracellular Ca 2+ overload. Despite considerable investigation, the underlying molecular mechanism(s) leading to LPS-induced ALI remain elusive. To determine whether stromal interaction molecule 1-dependent (STIM1-dependent) signaling drives endothelial dysfunction in response to LPS, we investigated oxidative and STIM1 signaling of EC-specific Stim1-knockout mice. Here we report that LPSmediated Ca 2+ oscillations are ablated in ECs deficient in Nox2, Stim1, and type II inositol triphosphate receptor (Itpr2). LPS-induced nuclear factor of activated T cells (NFAT) nuclear accumulation was abrogated by either antioxidant supplementation or Ca 2+ chelation. Moreover, ECs lacking either Nox2 or Stim1 failed to trigger store-operated Ca 2+ entry (SOCe) and NFAT nuclear accumulation. LPS-induced vascular permeability changes were reduced in EC-specific Stim1 -/-mice, despite elevation of systemic cytokine levels. Additionally, inhibition of STIM1 signaling prevented receptor-interacting protein 3-dependent (RIP3-dependent) EC death. Remarkably, BTP2, a small-molecule calcium release-activated calcium (CRAC) channel blocker administered after insult, halted LPS-induced vascular leakage and pulmonary edema. These results indicate that ROS-driven Ca 2+ signaling promotes vascular barrier dysfunction and that the SOCe machinery may provide crucial therapeutic targets to limit sepsis-induced ALI.
The rapid generation of various species and strains of laboratory animals using CRISPR/Cas9 technology has dramatically accelerated the interrogation of gene function in vivo. So far, the dominant approach for genotyping of genome-modified animals has been the T7E1 endonuclease cleavage assay. Here, we present a polyacrylamide gel electrophoresis-based (PAGE) method to genotype mice harboring different types of indel mutations. We developed 6 strains of genome-modified mice using CRISPR/Cas9 system, and utilized this approach to genotype mice from F0 to F2 generation, which included single and multiplexed genome-modified mice. We also determined the maximal detection sensitivity for detecting mosaic DNA using PAGE-based assay as 0.5%. We further applied PAGE-based genotyping approach to detect CRISPR/Cas9-mediated on- and off-target effect in human 293T and induced pluripotent stem cells (iPSCs). Thus, PAGE-based genotyping approach meets the rapidly increasing demand for genotyping of the fast-growing number of genome-modified animals and human cell lines created using CRISPR/Cas9 system or other nuclease systems such as TALEN or ZFN.
Background Cell fate is fluid, and may be altered experimentally by the forced expression of master regulators mediating cell lineage. Such reprogramming has been achieved using viral vectors encoding transcription factors. We recently discovered that the viral vectors are more than passive vehicles for transcription factors, as they participate actively in the process of nuclear reprogramming to pluripotency by increasing epigenetic plasticity. Based on this recognition, we hypothesized that small molecule activators of toll-like receptor 3 (TLR3), together with external microenvironmental cues that drive EC specification, might be sufficient to induce transdifferentiation of fibroblasts into ECs (iECs). Methods and Results We show that TLR3 agonist Poly I:C, combined with exogenous EC growth factors, transdifferentiated human fibroblasts into ECs. These iECs were comparable to HMVEC in immunohistochemical, genetic and functional assays, including the ability to form capillary-like structures and to incorporate acetylated-LDL. Furthermore, iECs significantly improved limb perfusion and neovascularization in the murine ischemic hindlimb. Finally, using genetic knockdown studies, we find that the effective transdifferentiation of human fibroblasts to endothelial cells requires innate immune activation. Conclusions This study suggests that manipulation of innate immune signaling may be generally used to modify cell fate. As similar signaling pathways are activated by damage associated molecular patterns, epigenetic plasticity induced by innate immunity may play a fundamental role in transdifferentiation during wound healing and regeneration. Finally, this study is a first step toward development of a small molecule strategy for therapeutic transdifferentiation for vascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.