The micro-channels and micro-devices have been widely used in mechanical engineering applications. A number of investigations have been conducted to better design the fluid flow and heat transfer in micro-channel, particularly as it pertains to applications involving the thermal control of electronic devices. The analysis of entropy generation mechanism is very important to optimize the second-law performance of these energy conversion devices in micro-scale. The main concern of this paper is to investigate the channel geometry effect on the mixing performances in the X-shaped micro-channels. Seven different tested channels consisting of shrunk-channel, normal-channel and magnified-channel, made of acrylic fabric with the width ranging from 0.7 to 1.3 mm, are considered. As the working fluid, water, is injected to microchannel at different mass flow rate, over a wide range of flow condition, 0.52 < Re < 718, have been discussed. Numerical simulation of the entropy generation, temperature gradient, velocity vector, and pressure drop has deliberated with experiment. Through the evaluations of the overall entropy generation in the whole flow domain, the results show that; as the Reynolds number below 136.68, magnified-channels have the lower entropy generation and best mixture of performance; above 136.68, in the smallest the channel geometry, the transition form early from laminar flow, the unsteady flow is an advantage for mixing in the limited mixing area, therefore, they generated the best mixing performance. It is clear that the channel geometry plays an important role on the mixing performances in the X-shaped micro-channels.
Flows in channels and pipes are often used in the chemical and mechanical engineering applications. In the past, several studies of micro-channels have focused on the mixture characteristics in the C-shaped and the T-shaped with complex flow field of temperature gradient, velocity vector, and pressure change. However, the purpose of this study is to research the flow transport phenomenon by employing different angles to the converging and diverging area in X-shaped micro-channels. As the working fluid, water is injected to micro-channel at different mass flow rate. Over a wide range of flow condition, 0.88 < Re < 661, in X-shaped micro-channels, the mixture performances of numerical simulation, flow visualization, and temperature distribution remain the same. At the same mass flow rate, the bigger the angle, the lower the pressure drops and the slower the low velocity becomes. Therefore, it is the biggest angle that has the best mixture of performance and needs the shortest distance in the mixing area. It is clear that the angle plays an important role in both converging and diverging area in the X-shaped micro-channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.