We study the quantum coherence and its distribution of N-partite GHZ and W states of bosonic fields in the noninertial frames with arbitrary number of acceleration observers. We find that the coherence of both GHZ and W state reduces with accelerations and freezes in the limit of infinite accelerations. The freezing value of coherence depends on the number of accelerated observers. The coherence of N-partite GHZ state is genuinely global and no coherence exists in any subsystems. For the N-partite W state, however, the coherence is essentially bipartite types, and the total coherence is equal to the sum of coherence of all the bipartite subsystems.
We study the genuine tripartite nonlocality (GTN) and the genuine tripartite entanglement (GTE) of Dirac fields in the background of a Schwarzschild black hole. We find that the Hawking radiation degrades both the physically accessible GTN and the physically accessible GTE. The former suffers from “sudden death” at some critical Hawking temperature, and the latter approaches to the nonzero asymptotic value in the limit of infinite Hawking temperature. We also find that the Hawking effect cannot generate the physically inaccessible GTN, but can generate the physically inaccessible GTE for fermion fields in curved spacetime. These results show that on the one hand the GTN cannot pass through the event horizon of black hole, but the GTE do can, and on the other hand the surviving physically accessible GTE and the generated physically inaccessible GTE for fermions in curved spacetime are all not nonlocal. Some monogamy relations between the physically accessible GTE and the physically inaccessible GTE are found.
Light wave-packets propagating from the Earth to satellites will be deformed by the curved background spacetime of the Earth, thus influencing the quantum state of light. We show that Gaussian coherence of photon pairs, which are initially prepared in a two-mode squeezed state, is affected by the curved spacetime background of the Earth. We demonstrate that quantum coherence of the state increases for a specific range of height h and then gradually approaches a finite value with further increasing height of the satellite's orbit in Kerr spacetime, because special relativistic effect are involved. Meanwhile, we find that Gaussian coherence increases with the increase of Gaussian bandwidth parameter, but the Gaussian coherence decreases with the growth of the peak frequency. In addition, we also find that total gravitational frequency shift causes changes of Gaussian coherence less than %1 and different initial peak frequencies also can effect rate of change with the satellite height in geostationary Earth orbits.
We study the Schwinger effect of Gaussian correlations (quantum entanglement, discord and mutual information) of the continuous-variable two-mode squeezed states shared by Alice and Bob, paying special attention to the difference of the Schwinger effect of correlations between modes of fermion-fermion and qubit-bosonic fields studied previously. We also study the redistribution and conservativeness of the correlations under the Schwinger effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.