Periodic chemically homogenized high-entropy alloy structures are constructed according to maximum entropy principle. The method can efficiently generate equimolar and non-equimolar high-entropy alloy atomic structures. Nine high-entropy alloys are simulated based on the constructed models using density functional theory techniques. The calculated lattice parameters are consistent with the available experimental data. The calculated enthalpies of mixing are more negative than the values estimated by using Miedema model, due to severe lattice distortion. The lattice distortion parameters were calculated. The results showed that fcc structure tend to stable with smaller and bcc structure with larger. The bulk modulus of Al1.5CoCrNiFe high-entropy alloys was fitted and the value is consistent with the available experimental data.
Keeping gas radiation is a major way of heat transfer in flames. It affects temperature distributions and hence causes energy transfer in the combustion gaseous as well as subsequent chemical reactions. Accurate and efficient modeling of radiative heat transfer in multi-dimensional combustion systems is challenging, due to the drastic and rapid change of the radiative properties of the reacting gases in the whole spectrum, and the extensive computational cost for solving the radiative transfer equation (RTE) in multi-dimensional space. Several gas radiation models and RTE solution methods have been proposed to treat non-gray radiation heat transfer in combustion systems. In this paper, we first review the development of spectral line databases, gas radiation models and RTE solution methods. Subsequently, the development of radiation model parameters for different gaseous species is discussed. Next, recent simulation investigations are reviewed for one-dimensional, twodimensional and three-dimensional systems involving these state-of-the-art radiation models. In addition, we also discuss machine learning approaches for establishing gas radiation models and solving RTEs in non-gray gas radiative problems, an alternative and flexible way to deal with the complex and dynamic systems. Hopefully, this review will provide an up-to-date knowledge about the numerical calculations of gas radiation heat transfers in combustion systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.