Highlights
The limonene, β-myrcene and (E)-ocimene were the main volatile substances.
The content of volatile substances was closely related to the growth location.
The aroma of Chinese prickly ash in western region was citrus and floral.
Samples in the central and eastern regions was heavier spicy flavor.
It revealed the influence of climatic factors on the volatile substances.
The chemotypic and the content variation in taste substances and nutrients in ‘Shushanggan apricot’ fruits were detected by UPLC-MS/MS. A total of 592 compounds were identified, of which sucrose contributed mainly to the sweet taste and malic acid and citric acid were important organic acids affecting sweet–sour taste. γ-linolenic acid, α-linolenic acid and linoleic acid were the dominant free fatty acids, and neochlorogenic acid and chlorogenic acid were the predominant phenolic acids. Fruit taste was positively correlated with sucrose and negatively correlated with malic acid and citric acid. The differential metabolites were significantly enriched in the biosynthesis of amino acids and 2-oxocarboxylic acid metabolism pathways, regulating the sugar and organic acid biosynthesis. Taste and nutrient differences could be revealed by variations in composition and abundance of carbohydrates, organic acids and amino acids. The purpose of this study was to provide a comprehensive chemical characterization of taste and nutrient compounds in ‘Shushanggan apricot’ fruits.
Rapeseed’s (Brassica napus L.) colorful petals have important ornamental values. However, the mechanisms of regulating petals coloration in rapeseed are still unknown. In our study, we investigated the key differential coloring substances in nine rapeseed cultivars with different petal colors, and 543 metabolites were detected and characterized through UPLC-HESI-MS/MS. Among them, the kinds and contents of flavonols, flavones, and anthocyanidins were the main contributors to petals’ coloration. Tamarixetin-, quercetin-, butin-, naringenin- and luteolin-derivates were the main pigment bases in white and yellow petals. Peonidin-3,5-O-diglucoside, peonidin-3-O-(6″-O-caffeoyl)glucoside, and quercetin-derivatives were the main coloring substances in pink petals. Acylated cyanidin derivatives might lead to a series of different purple petal colors. Glycosylated anthocyanins were responsible for the coloration of rapeseed red petals, and peonidin-3-O-glucoside and kaempferol-derivatives were mainly detected from the red petals. These results provide comprehensive insights into the difference in flavonoid metabolites in rapeseed petals with different colors and supply theoretical supports for the breeding of novel colorful rapeseed cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.