Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ∼0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium and neon whose strengths and presence depend on the overall level of absorption. They imply a co-existence of cool and hot gas phases in the system that we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.
The frequency and severity of extreme weather events are increasing and expected to increase more in the future, together with global change. However, how extreme events and global change factors interactively influence community structures and ecosystem processes is largely unknown. Here, we investigated the responses of the temporal stability and resilience of aboveground net primary productivity (ANPP) of an alpine meadow to an extreme flooding event under different treatments of experimental drought and clipping. We found that ecosystems that were exposed to drought treatments for 3 years significantly decreased the temporal stability of community productivity but increased resilience to flooding, whereas their resistance to or recovery from flooding did not change.Neither clipping nor its interaction with drought altered the responses of these community stability metrics to flooding. Drought treatments significantly decreased plant species richness and asynchrony and dominant species stability, leading to a decrease in temporal stability and an increase in resilience in response to the extreme flooding event. The study also revealed that the change in species asynchrony was the dominant impact pathway determining the responses of resilience and temporal stability to flooding. Our results highlight that alpine grassland that experiences a multiyear drought may aggravate the instability of community productivity to extreme climatic events by reducing species asynchrony.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.