To optimize the in vivo folding of proteins, we linked protein stability to antibiotic resistance, thereby forcing bacteria to effectively fold and stabilize proteins. When we challenged Escherichia coli to stabilize a very unstable periplasmic protein, it massively overproduced a periplasmic protein called Spy, which increases the steady-state levels of a set of unstable protein mutants up to 700-fold. In vitro studies demonstrate that the Spy protein is an effective ATP-independent chaperone that suppresses protein aggregation and aids protein refolding. Our strategy opens up new routes for chaperone discovery and the custom tailoring of the in vivo folding environment. Spy forms thin, apparently flexible cradle-shaped dimers. Spy is unlike the structure of any previously solved chaperone, making it the prototypical member of a new class of small chaperones that facilitate protein refolding in the absence of energy cofactors.
A central aspect of aging research concerns the question as to when individuality in lifespan arises 1. We have now discovered that a transient increase in reactive oxygen species (ROS), which occurs naturally during early development in a subpopulation of synchronized Caenorhabditis elegans, sets processes into motion that increase stress resistance, improve redox homeostasis and ultimately prolong lifespan in those animals. We find that these effects are linked to the global ROS-mediated decrease in developmental histone H3K4me3 levels. Studies in HeLa cells confirmed that global H3K4me3 levels are ROS-sensitive, and that depletion of H3K4me3 levels increases stress resistance in mammalian cell cultures. In vitro studies identified the Set1/MLL histone methyltransferase as the redox sensitive unit of the H3K4-trimethylating COMPASS complex. Our findings imply a novel link between early-life events, ROS-sensitive epigenetic marks, stress resistance and lifespan.
These results show that dietary treatment using B. lactis HN019 can reduce the severity of weanling diarrhea associated with rotavirus and E. coli, possibly via a mechanism of enhanced immune-mediated protection. This study suggests that probiotic treatment may be an effective dietary means of preventing or limiting diarrhea in human infants.
The CXXC active-site motif of thiol-disulfide oxidoreductases is thought to act as a redox rheostat, the sequence of which determines its reduction potential and functional properties. We tested this idea by selecting for mutants of the CXXC motif in a reducing oxidoreductase (thioredoxin) that complement null mutants of a very oxidizing oxidoreductase, DsbA. We found that altering the CXXC motif affected not only the reduction potential of the protein, but also its ability to function as a disulfide isomerase and also impacted its interaction with folding protein substrates and reoxidants. It is surprising that nearly all of our thioredoxin mutants had increased activity in disulfide isomerization in vitro and in vivo. Our results indicate that the CXXC motif has the remarkable ability to confer a large number of very specific properties on thioredoxin-related proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.