Inexpensive, high-performing, and environmentally friendly energy storage devices are required for smart grids that efficiently utilize renewable energy. Energy storage devices consisting of organic active materials are promising because organic materials, especially quinones, are ubiquitous and usually do not require harsh conditions for synthesis, releasing less CO2 during mass production. Although fundamental research-scale aqueous quinone-based organic supercapacitors have shown excellent energy storage performance, no practical research has been conducted. In this study, we aimed to develop a practical-scale aqueous-quinone-based organic supercapacitor. By connecting 12 cells of size 10 cm × 10 cm × 0.5 cm each in series, we fabricated a high-voltage (> 6 V) aqueous organic supercapacitor that can charge a smartphone at a 1 C rate. This is the first step in commercializing aqueous organic supercapacitors that could solve environmental problems, such as high CO2 emissions, air pollution by toxic metals, and limited electricity generation by renewable resources.
We
herein report that sulfur and nitrogen co-doped hollow spherical
carbon particles can be applied to oxygen reduction reaction (ORR)
electrocatalysts prepared by calcination of polydopamine (PDA) hollow
particles. The hollow structure of PDA was formed by auto-oxidative
interfacial polymerization of dopamine at the oil and water interface
of emulsion microdroplets. The PDA was used as the nitrogen source
as well as a platform for sulfur-doping. The obtained sulfur and nitrogen
co-doped hollow particles showed a higher catalytic activity than
that of nonsulfur-doped particles and nonhollow particles. The high
ORR activity of the calcined S-doped PDA hollow particles could be
attributed to the combination of nitrogen and sulfur active sites
and the large surface areas owing to a hollow spherical structure.
Inexpensive, high-performing, and environmentally friendly energy storage devices are required for smart grids that efficiently utilize renewable energy. Energy storage devices consisting of organic active materials are promising because organic materials, especially quinones, are ubiquitous and usually do not require harsh conditions for synthesis, releasing less CO2 during mass production. Although fundamental research-scale aqueous quinone-based organic supercapacitors have shown excellent energy storage performance, no practical research has been conducted. We aimed to develop a practical-scale aqueous-quinone-based organic supercapacitor. By connecting 12 cells of size 10 cm × 10 cm × 0.5 cm each in series, we fabricated a high-voltage (> 6 V) aqueous organic supercapacitor that can charge a smartphone at a 1 C rate. This is the first step in commercializing aqueous organic supercapacitors that could solve environmental problems, such as high CO2 emissions, air pollution by toxic metals, and limited electricity generation by renewable resources.
Herein, we report the impregnation of chloranil into activated carbon micropores using scCO2. The sample prepared under 105 °C and 15 MPa showed a specific capacity of 81 mAh/gelectrode, except...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.