Brief exposure of skin to near-infrared (NIR) laser light has been shown to augment the immune response to intradermal vaccination and thus act as an immunologic adjuvant. Although evidence indicates that the NIR laser adjuvant has capacity to activate innate subsets including dendritic cells (DCs) in skin as conventional adjuvants do, the precise immunological mechanism by which the NIR laser adjuvant acts is largely unknown. Here we sought to identify the cellular target of the NIR laser adjuvant by using an established mouse model of intradermal influenza vaccination and examining the alteration of responses resulting from genetic ablation of specific DC populations. We found that a continuous wave (CW) NIR laser adjuvant broadly modulates migratory DC populations, specifically increasing and activating the Lang+ and CD11b−Lang− subsets in skin, and that the antibody responses augmented by the CW NIR laser are dependent on DC subsets expressing CCR2 and Langerin. In comparison, a pulsed wave (PW) NIR laser adjuvant showed limited effects on the migratory DC subsets. Our vaccination study demonstrated that the efficacy of CW NIR laser is significantly better than that of PW laser, indicating that the CW NIR laser offers a desirable immunostimulatory microenvironment for migratory DCs. These results demonstrate the unique ability of the NIR laser adjuvant to selectively target specific migratory DC populations in skin depending on its parameters, and highlight the importance of optimization of laser parameters for desirable immune protection induced by a NIR laser-adjuvanted vaccine.
Top-gate staggered hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) were fabricated over large-area glass substrates using a selective phosphorus-treatment (PT) of indium-tin-oxide (ITO) source/drain electrodes. The ohmic contact between a-Si:H and ITO had a specific contact resistivity of about 0.18 Ω·cm2. For a 100-µm channel length TFT, the source/drain series resistance contributes less than 5% of the total drain-to-source resistance. This contribution increases to about 25% for a 10-µm channel length TFT. Our study also indicated that the interface quality of a-Si:H/a-SiN x :H is amorphous silicon nitride (a-SiN x :H) and a-Si:H thickness independent and dependent, respectively. Effective interface state densities of about 1.5×1012 cm-2eV-1 and 3.2×1012 cm-2eV-1 were obtained for top-gate TFTs with a 1300 and 300 Å thick a-Si:H films, respectively. Channel conductance activation energy of about 0.1 eV was measured for this top-gate TFT with 300 Å a-Si:H.
A brief exposure of skin to a low-power, non-tissue damaging laser light has been demonstrated to augment immune responses to intradermal vaccination. Both preclinical and clinical studies show that this approach is simple, effective, safe and well tolerated compared to standard chemical or biological adjuvants. Until now, these laser exposures have been performed using a diode-pumped solid-state laser (DPSSL) devices, which are expensive and require labor-intensive maintenance and special training. Development of an inexpensive, easy-to-use and small device would form an important step in translating this technology toward clinical application Here we report that we have established a handheld, near-infrared (NIR) laser device using semiconductor diodes emitting either 1061, 1258, or 1301 nm light that costs less than $4,000, and that this device replicates the adjuvant effect of a DPSSL system in a mouse model of influenza vaccination. Our results also indicate that a broader range of NIR laser wavelengths possess the ability to enhance vaccine immune responses, allowing engineering options for the device design. This small, low-cost device establishes the feasibility of using a laser adjuvant approach for mass-vaccination programs in a clinical setting, opens the door for broader testing of this technology with a variety of vaccines and forms the foundation for development of devices ready for use in the clinic.
Background and Objectives: Condoliase, a chondroitin sulfate ABC endolyase, is a novel and minimally invasive chemonucleolytic drug for lumbar disc herniation. Despite the growing number of treatments for lumbar disc herniation, the predicting factors for poor outcomes following treatment remain unclear. The aim of this study was to determine the predictive factors for unsuccessful clinical outcome following condoliase therapy. Material and Methods: We performed a retrospective single-center analysis of 101 patients who underwent chemonucleolysis with condoliase from January 2019 to December 2021. Patients were divided into good outcome (i.e., favorable outcome) and poor outcome (i.e., requiring additional surgical treatment) groups. Patient demographics and imaging findings were collected. Clinical outcomes were evaluated using the numerical rating scale and Japanese Orthopaedic Association scores at baseline and at 1- and 3-month follow-up. Pretreatment indicators for additional surgery were compared between the 2 groups. Results: There was a significant difference in baseline leg numbness between the good outcome and poor outcome groups (6.27 ± 1.90 vs. 4.42 ± 2.90, respectively; p = 0.033). Of the 101 included patients, 32 received a preoperative computed tomography scan. In those patients, the presence of calcification or ossification in disc hernia occurred more often in the poor outcome group (61.5% vs. 5.3%, respectively; p < 0.001; odds ratio = 22.242; p = 0.014). Receiver-operating characteristics curve analysis for accompanying calcification or ossification showed an area under the curve of 0.858 (95% confidence interval, 0.715–1.000; p = 0.001). Conclusions: Calcified or ossified disc herniation may be useful predictors of unsuccessful treatment in patients with condoliase administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.