Herein, we describe an approach that immobilizes low-molecular-weight hyaluronic acid (low-MW HA) on the surface of gold nanoparticles (GNPs), which can serve as a cellular probe and photodamage media, to evaluate the selectivity and efficiency of HA-based GNPs (HGNPs) as a mediator of laser-induced photothermal cell damage. In addition, it is known that solid tumors contain a higher content of low-MW HA than normal tissues. Thus, we used low-MW HA rather than high-MW HA used in other studies. In the present study, we conjugated low-MW HA, which is a linear polysaccharide with a disaccharide repeat unit, to prevent a reduction of the ligand-receptor binding efficiency in contrast to the conjugation of protein or peptides, which have unique three-dimensional structures. Three cell lines-MDA-MB-435 S (with CD44), MDA-MB-453 and NIH/3T3 (both are without CD44)-were investigated in the study, and qualitative observations were conducted by dark-field microscopy and laser scanning confocal microscopy (LSCM). In addition, quantitative measurements calculated using inductively coupled plasma emissions were taken for comparison. Our results showed that within the same treatment time, the uptake dosage of HGNPs by the MDA-MB-435 S cells was higher than that by the MDA-MB-453 and NIH 3T3 cells. Meanwhile, HGNPs uptake by the untreated MDA-MB-435 S cells was higher than that of MDA-MB-435 S cells with CD44 blocked by antibodies or silencing CD44 expression. This result implies that receptor-mediated endocytosis can enhance the cellular uptake of HGNPs. In addition, when exposed to a low-power pulsed laser, the former cell morphologies showed a more laser-induced giant plasma membrane vesicles (GPMV) than the latter morphologies. Therefore, this study utilized the specific photothermal property of HA-modified GNPs with laser-induced blebs to create a possible new method for medical applications.
Hyaluronan-cisplatin conjugate nanoparticles (HCNPs) were chosen as colon-targeting drug-delivery carriers due to the observation that a variety of malignant tumors overexpress hyaluronan receptors. HCNPs were prepared by mixing cisplatin with a hyaluronan solution, followed by dialysis to remove trace elements. The cells treated with HCNPs showed significantly lower viability than those treated with cisplatin alone. HCNPs were entrapped in Eudragit S100-coated pectinate/alginate microbeads (PAMs) by using an electrospray method and a polyelectrolyte multilayer-coating technique in aqueous solution. The release profile of HCNPs from Eudragit S100-coated HCNP-PAMs was pH-dependent. The percentage of 24-hour drug release was approximately 25.1% and 39.7% in pH 1.2 and pH 4.5 media, respectively. However, the percentage of drug released quickly rose to 75.6% at pH 7.4. Moreover, the result of an in vivo nephrotoxicity study demonstrated that Eudragit S100-coated HCNP-PAMs treatment could mitigate the nephrotoxicity that resulted from cisplatin. From these results, it can be concluded that Eudragit S100-coated HCNP-PAMs are promising carriers for colonspecific drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.