The author and journal retract the article (The Temporal-Spatial Distribution and Information-Diffusion-Based Risk Assessment of Forest Fires in China) [...]
As forest fires are becoming a recurrent and severe issue in China, their temporal-spatial information and risk assessment are crucial for forest fire prevention and reduction. Based on provincial-level forest fire data during 1998–2017, this study adopts principal component analysis, clustering analysis, and the information diffusion theory to estimate the temporal-spatial distribution and risk of forest fires in China. Viewed from temporality, China’s forest fires reveal a trend of increasing first and then decreasing. Viewed from spatiality, provinces characterized by high population density and high coverage density are seriously affected, while eastern coastal provinces with strong fire management capabilities or western provinces with a low forest coverage rate are slightly affected. Through the principal component analysis, Hunan (1.33), Guizhou (0.74), Guangxi (0.51), Heilongjiang (0.48), and Zhejiang (0.46) are found to rank in the top five for the severity of forest fires. Further, Hunan (1089), Guizhou (659), and Guanxi (416) are the top three in the expected number of general forest fires, Fujian (4.70), Inner Mongolia (4.60), and Heilongjiang (3.73) are the top three in the expected number of large forest fires, and Heilongjiang (59,290), Inner Mongolia (20,665), and Hunan (5816) are the top three in the expected area of the burnt forest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.