SLC12A5, a neuron-specific potassium-chloride co-transporter, has been reported to promote tumor progression, however, the underlying mechanism remains unclear. Here we report that SLC12A5 functions as an oncogene to promote tumor progression and castration resistance of prostate cancer through the N6-methyladenosine (m6A) reader YTHDC1 and the transcription factor HOXB13. We have shown that the level of SLC12A5 was increased in prostate cancer, in comparison to its normal counterparts, and further elevated in castration-resistant prostate cancer (CRPC). The enhanced expression of SLC12A5 mRNA was associated with neuroendocrine prostate cancer (NEPC) progression and poor survival in prostate cancer. Furthermore, we demonstrated that SLC12A5 promoted the castration resistance development of prostate cancer in addition to the cell proliferation and migration. Interestingly, SLC12A5 was detected in the cell nucleus and formed a complex with nuclear m6A reader YTHDC1, which in turn upregulated HOXB13 to promote the prostate cancer progression. Therefore, our findings reveal a mechanism that how the potassium-chloride cotransporter SLC12A5 promotes the tumor progression and provide a therapeutic opportunity for prostate cancer to apply the neurological disorder drug SLC12A5 inhibitors.
The prognosis of lung cancer is poor with few effective therapies. Targeting ferroptosis is a new promising strategy for cancer therapy. LINC00641 has been involved in several cancers, however, its specific roles in lung cancer treatment remain largely unknown. Here, we reported that LINC00641 was down-regulated in tumor tissues and its downregulation was associated with poor outcomes in lung adenocarcinoma. LINC00641 was localized primarily in the nucleus and was modified by m6A. The nuclear m6A reader YTHDC1 regulated LINC00641 expression by affecting its stability. We demonstrated that LINC00641 suppressed lung cancer by inhibiting migration and invasion in vitro and metastasis in vivo. Knockdown of LINC00641 upregulated HuR protein level (especially in the cytoplasm), which subsequently increased N-cadherin levels by stabilizing its mRNA, then ultimately promoted EMT. Interestingly, LINC00641 knockdown in lung cancer cells increased the arachidonic acid metabolism and promoted ferroptosis sensitivity. Our findings identified LINC00641 as a tumor suppressor through inhibiting EMT. In another aspect, low expression of LINC00641 caused a ferroptotic vulnerability in lung cancer cells, which may serve as a potential ferroptosis-related therapeutic target for lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.