Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS. Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger. Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency – a 50% (90%) credible area of 5 deg2 (23 deg2) – despite the relatively large distance of 267 ± 52 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups. Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS–BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r ∼ 22 (resp. K ∼ 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total ∼50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M ≳ 0.1 M⊙ to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger. Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
PSR B1259-63/LS 2883 is an elliptical pulsar/Be star binary that emits broadband emissions from radio to TeV γ-rays. The massive star possesses an equatorial disc that is inclined with the orbital plane of the pulsar. Non-thermal emission from the system is believed to be produced by pulsar wind shock and double-peak profiles in the X-ray, and TeV γ-ray light curves are related to the phases of the pulsar passing through the disc region of the star. In this paper, we investigate the interactions between the pulsar wind and stellar outflows, especially with the presence of the disc, and present a multiwavelength modelling of the emission from this system. We show that the double-peak profiles of X-ray and TeV γ-ray light curves are caused by the enhancements of the magnetic field and soft photons at the shock during the disc passages. As the pulsar is passing through the equatorial disc, the additional pressure of the disc pushes the shock surface closer to the pulsar, which causes the enhancement of magnetic field in the shock, and thus increases the synchrotron luminosity. The TeV γ-rays due to the inverse-Compton (IC) scattering of shocked electrons with seed photons from the star are expected to peak around periastron, which is inconsistent with observations. However, the shock heating of the stellar disc could provide additional seed photons for IC scattering during the disc passages, and thus produces the double-peak profiles as observed in the TeV γ-ray light curve. Our model can possibly be examined and applied to other similar gamma-ray binaries, such as PSR J2032+4127/MT91 213, HESS J0632+057, and LS I+61 • 303.
We present the results of a search for gravitational waves (GWs) from individual sources using high cadence observations of PSR B1937+21. The data were acquired from an intensive observation campaign with the Lovell telescope at Jodrell Bank, between June 2011 and May 2013. The almost daily cadence achieved, allowed us to be sensitive to GWs with frequencies up to 4.98 × 10 −6 Hz, extending the upper bound of the typical frequency range probed by Pulsar Timing Arrays. We used observations taken at three different radio frequencies with the Westerbork Synthesis Radio Telescope in order to correct for dispersion measure effects and scattering variances. The corrected timing residuals exhibited an unmodeled periodic noise with an amplitude 150 ns and a frequency of 3.4yr −1 . As the signal is not present in the entire data set, we attributed it to the rotational behaviour of the pulsar, ruling out the possibilities of being either due to a GW or an asteroid as the cause. After removing this noise component, we placed limits on the GW strain of individual sources equaling to h s = 1.53 × 10 −11 and h s = 4.99 × 10 −14 at 10 −7 Hz for random and optimal sources locations respectively.
Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.