BackgroundNon-small cell lung cancer (NSCLC) expressed high levels of epidermal growth factor receptor (EGFR). Gefitinib (Iressa) has demonstrated clinical efficacy in NSCLC patients harboring EGFR mutations or refractory to chemotherapy. However, most of NSCLC patients are with wild type EGFR, and showed limited response to gefitinib. Therefore, to develop new effective therapeutic interventions for NSCLC is still required. Our previous study showed Marsdenia tenacissima extract (MTE) restored gefitinib efficacy in the resistant NSCLC cells, but whether MTE acts in the gefitinib-sensitive NSCLC cells is the same as it in the resistant one is unknown.MethodsDose response curves for gefitinib and MTE were generated for two sensitive NSCLC cell lines with mutant or wild type EGFR status. Three different sequential combinations of MTE and gefitinib on cell growth were evaluated using IC50 and Combination Index approaches. The flow cytometric method was used to detect cell apoptosis and cell cycle profile. The impact of MTE combined with gefitinib on cell molecular network response was studied by Western blotting.ResultsUnlike in the resistant NSCLC cells, our results revealed that low cytotoxic dose of MTE (8 mg/ml) combined gefitinib with three different schedules synergistically or additively enhanced the growth inhibition of gefitinib. Among which, MTE → MTE + gefitinib treatment was the most effective one. MTE markedly prompted cell cycle arrest and apoptosis caused by gefitinib both in EGFR mutant (HCC827) and wild type of NSCLC cells (H292). The Western blotting results showed that MTE → MTE + gefitinib treatment further enhanced the suppression of gefitinib on cell growth and apoptosis pathway such as ERK1/2 and PI3K/Akt/mTOR. This combination also blocked the activation of EGFR and c-Met which have cross-talk with each other. Unlike in gefitinib-resistant NSCLC cells, MTE alone also demonstrated certain unexpected modulation on EGFR related cell signal pathways in the sensitive cells.ConclusionOur results suggest that MTE is a promising herbal medicine to improve gefitinib efficacy in NSCLC regardless of EGFR status. However, why MTE acted differently between gefitinib-sensitive and -resistant NSCLC cells needs a further research.
Tyrosine kinase inhibitors (TKIs) are an effective treatment strategy for non-small cell lung cancer (NSCLC) patients harboring mutations that result in constitutive activation of the epidermal growth factor receptor (EGFR). However, most patients eventually develop resistance to TKIs. This occurs due to additional EGFR mutations or the activation of bypass signaling pathways. In our previous work, we demonstrated that Marsdenia tenacissima extract (MTE) restored gefitinib sensitivity in resistant NSCLC cells with EGFR T790M or K-ras mutations. However, the potential efficacy of MTE in NSCLC cells with resistance mediated by Axl and c-Met, and the related molecular mechanisms need to be elucidated. In this study we evaluated the ability of MTE to restore erlotinib/gefitinib sensitivity in TKI resistant HCC827/ER cells and xenograft mice models. Our results demonstrate that MTE overcomes erlotinib and gefitinib resistance driven by Axl and c-Met in vitro and in vivo. Combination therapy significantly suppressed EGFR downstream molecules and the c-Met and Axl activated bypass signaling pathways. Moreover, we observed that MTE is more efficient at restoring resistance to erlotinib than gefitinib. As the Axl and c-Met mediated bypass pathways share the same downstream signaling cascade as EGFR, simultaneous targeting of these pathways is a promising strategy to overcome acquired resistance of TKIs. Our results demonstrate that MTE treatment attenuates Axl phosphorylation and the associated epithelial-mesenchymal transition, suggesting MTE treatment may be a potential therapeutic strategy for overcoming erlotinib and gefitinib cross-resistance in NSCLC, especially for erlotinib resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.