Alkali-fulleride superconductors with a maximum critical temperature Tc 40 K exhibit similar electronic phase diagram with unconventional high-Tc superconductors [1][2][3][4][5] where the superconductivity resides proximate to a magnetic Mott-insulating state 3-6 . However, distinct from cuprate compounds, which superconduct through two-dimensional (2D) CuO2 planes 7 , alkali fullerides are attributed to the three-dimensional (3D) members of high-Tc family 8,9 . Here, we employ scanning tunneling microscopy (STM) to show that trilayer K3C60 displays fully gapped strong coupling s-wave superconductivity that coexists spatially with a cuprate-like pseudogap state above Tc 22 K and within vortices. A precise control of electronic correlations and doping reveals that superconductivity occurs near a superconductor-Mott insulator transition (SMIT) and reaches maximum at half-filling. The s-wave symmetry retains over the entire phase diagram, which, in conjunction with an abrupt decline of superconductivity below half-filling, demonstrates that alkali fullerides are predominantly phonon-mediated superconductors, although the multiorbital electronic correlations also come into play.
Identifying the essence of doped Mott insulators is one of the major outstanding problems in condensed matter physics and the key to understanding the high-temperature superconductivity in cuprates. We report real space visualization of Mott transition in Sr1-xLaxCuO2+y cuprate films that cover the entire electron-and hole-doped regimes. Tunneling conductance measurements directly on the cooper-oxide (CuO2) planes reveal a systematic shift in the Fermi level, while the fundamental Mott-Hubbard band structure remains unchanged. This is further demonstrated by exploring atomic-scale electronic response of CuO2 to substitutional dopants and intrinsic defects in a sister compound Sr0.92Nd0.08CuO2.The results could be better explained in the framework of self-modulation doping, similar to that in semiconductor heterostructures, and form a basis for developing any microscopic theories for cuprate superconductivity.
Local quasiparticle states around impurities provide essential insight into the mechanism of unconventional superconductivity, especially when the candidate materials are proximate to an antiferromagnetic Mott-insulating phase. While such states have been reported in atom-based cuprates and iron-based compounds, they are unexplored in organic superconductors which feature tunable molecular orientation. Here we employ scanning tunneling microscopy and spectroscopy to reveal multiple forms of robustness of an exotic s-wave superconductivity in epitaxial Rb3C60 films against merohedral disorder, non-magnetic single impurities and step edges at the atomic scale. Yu-Shiba-Rusinov (YSR) states, induced by deliberately incurred Fe adatoms that act as magnetic scatterers, have also been observed. The YSR bound states show abrupt spatial decay and vary in energy with the Fe adatom registry. These results and a doping-dependent study of superconductivity point towards local electron pairing in which the multiorbital electronic correlations and intramolecular phonons together drive the high-temperature superconductivity of doped fullerenes.
BackgroundRecent studies have suggested that cardiometabolic index (CMI), a novel estimate of visceral adipose tissue, could be of use in the evaluation of cardiovascular risk factors. However, the potential utility and clinical significance of CMI in the detection of reduced estimated glomerular filtration rate (eGFR) remains uncertain. The purpose of this study was to investigate the usefulness of CMI in assessing reduced eGFR in the general Chinese population.MethodsThis cross-sectional analysis included 11,578 participants (mean age: 53.8 years, 53.7% females) from Northeast China Rural Cardiovascular Health Study (NCRCHS) of general Chinese population (data collected from January 2013 to August 2013). CMI was calculated by triglyceride to high density lipoprotein cholesterol ratio multiply waist-to-height ratio. Reduced eGFR was defined as eGFR< 60 ml/min per 1.73m2. Multivariate regressions were performed to determine CMI’s association with eGFR value and eGFR reduction, ROC analyses were employed to investigate CMI’s discriminating ability for decreased eGFR.ResultsThe prevalence of reduced eGFR was 1.7% in males and 2.5% in females. CMI was notably more adverse in reduced eGFR groups, regardless of genders. In fully adjusted multivariate linear models, each 1 SD increment of CMI caused 3.150 ml/min per 1.73m2 and 2.411 ml/min per 1.73m2 loss of eGFR before CMI reached 1.210 and 1.520 in males and females, respectively. In logistic regression analyses, per 1 SD increase of CMI brought 51.6% additional risk of reduced eGFR in males while caused 1.347 times of risk in females. After divided into quartiles, people in the top quartile of CMI had higher adjusted ORs of having reduced eGFR, with ORs of 4.227 (1.681, 10.627) and 3.442 (1.685–7.031) for males and females respectively. AUC of CMI was revealed to be 0.633 (0.620–0.646) in males and 0.684 (0.672–0.695) in females.ConclusionsHigher CMI was independently associated with greater burden of reduced eGFR, highlighting VAT distribution and dysfunction as a potential mechanism underlying the association of obesity with kidney damage and adverse cardiovascular outcomes. The findings from this study provided important insights regarding the potential usefulness and clinical relevance of CMI in the detection of reduced eGFR among general Chinese population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.