Diabetes mellitus (DM), as a chronic disease caused by insulin deficiency or using obstacles, is gradually becoming a principal worldwide health problem. Pueraria lobata is one of the traditional Chinese medicinal and edible plants, playing roles in improving the cardiovascular system, lowering blood sugar, anti-inflammation, anti-oxidation, and so on. Studies on the hypoglycemic effects of Pueraria lobata were also frequently reported. To determine the active ingredients and related targets of Pueraria lobata for DM, 256 metabolites were identified by LC/MS non targeted metabonomics, and 19 active ingredients interacting with 51 DM-related targets were screened. The results showed that puerarin, quercetin, genistein, daidzein, and other active ingredients in Pueraria lobata could participate in the AGE-RAGE signaling pathway, insulin resistance, HIF-1 signaling pathway, FoxO signaling pathway, and MAPK signaling pathway by acting on VEGFA, INS, INSR, IL-6, TNF and AKT1, and may regulate type 2 diabetes, inflammation, atherosis and diabetes complications, such as diabetic retinopathy, diabetic nephropathy, and diabetic cardiomyopathy.
As a chronic non-infectious disease, severely affecting human quality and health of life, diabetes mellitus (DM) and its complications have gradually developed into a major global public health problem. Mulberry Leaf and Radix Astragali have been used as a traditional medicinal formulation in diabetic patients for a long time, whose combination is usually found in traditional Chinese medicine prescriptions. However, due to the unclear synergistic mechanism of them for DM, the changes of differential genes and proteins in the liver tissue of streptozotocin-induced diabetic mice were analyzed, and then the potential synergistic mechanism of them in anti-diabetes was investigated in our research. Compared with the diabetic model group, there were 699 differentially expressed genes and 169 differentially expressed proteins in the Mulberry Leaf and Radix Astragali treated group, and there were 35 common specific genes both in the transcriptome and the proteome. These common genes participated mainly in the pathways, such as retinol metabolism, steroid hormone biosynthesis, and arachidonic acid metabolism. Quantitative real-time PCR() and Western blot results speculated that the synergistic effect on anti-diabetes was mainly through regulating the expression of Tap1, Ncoa4, and Alas2, by down-regulating Fabp2 and Hmox1 and up-regulating Hmgcr, Cyp7a1. All these genes would affect bile acid secretion, alleviate the occurrence of iron death, promote the metabolism and synthesis of glycolipid substances, and ultimately maintain the body’s glucose homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.