Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Van der Waals heterostructures consisting of graphene and transition metal dichalcogenides have shown great promise for optoelectronic applications. However, an in-depth understanding of the critical processes for device operation, namely, interfacial charge transfer (CT) and recombination, has so far remained elusive. Here, we investigate these processes in graphene-WS2 heterostructures by complementarily probing the ultrafast terahertz photoconductivity in graphene and the transient absorption dynamics in WS2 following photoexcitation. We observe that separated charges in the heterostructure following CT live extremely long: beyond 1 ns, in contrast to ~1 ps charge separation reported in previous studies. This leads to efficient photogating of graphene. Furthermore, for the CT process across graphene-WS2 interfaces, we find that it occurs via photo-thermionic emission for sub-A-exciton excitations and direct hole transfer from WS2 to the valence band of graphene for above-A-exciton excitations. These findings provide insights to further optimize the performance of optoelectronic devices, in particular photodetection.
As a new family of
semiconductors, graphene nanoribbons (GNRs),
nanometer-wide strips of graphene, have appeared as promising candidates
for next-generation nanoelectronics. Out-of-plane deformation of π-frames
in GNRs brings further opportunities for optical and electronic property
tuning. Here we demonstrate a novel fjord-edged GNR (
FGNR
) with a nonplanar geometry obtained by regioselective cyclodehydrogenation.
Triphenanthro-fused teropyrene
1
and pentaphenanthro-fused
quateropyrene
2
were synthesized as model compounds,
and single-crystal X-ray analysis revealed their helically twisted
conformations arising from the [5]helicene substructures. The structures
and photophysical properties of
FGNR
were investigated
by mass spectrometry and UV–vis, FT-IR, terahertz, and Raman
spectroscopic analyses combined with theoretical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.