Complex shock interactions and severe aerothermal loads are often encountered on the lips of three-dimensional inward-turning inlets, which presents significant challenges to the performance and safety of hypersonic flight vehicles. However, there have been few investigations on reducing the heat flux of the lips, especially when considering real gas effects. It is therefore necessary to investigate flow control methods that are suitable for the lips under real gas effects. Three flow control methods are implemented in this work: a passive method with shock control bump and stagnation bulge, an active method with counterflow jet, and a combined method. The lip is simplified as a V-shaped blunt leading edge to eliminate the influence of other structures. Numerical simulations are performed at freestream Mach numbers ranging from 6.0 to 12.0. The principles and abilities of different flow control methods for reducing heat flux are compared and analyzed. Although the passive and active methods can reduce the heat flux by more than 40% at low Mach numbers, they have an apparent deficiency under strong real gas effects at high Mach numbers. Moreover, the active method causes new heat flux peaks near the nozzle and at the reattachment position of the flow separation zone. Therefore, a combined method is proposed for further reducing the heat flux. By coupling the passive and active methods, the combined method can reduce the heat flux by nearly 60%. In general, the flow control methods investigated in this work can achieve satisfactory heat flux reduction abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.