Deeper mechanistic understanding of non-small cell lung cancer (NSCLC), a leading cause of total cancer-related deaths, may facilitate the establishment of more effective therapeutic strategies. In this study, pituitary tumor transforming gene (PTTG1) expression was associated with lymph node and distant metastasis in patients with NSCLC and was correlated with patient survival. Reduction of PTTG1 by small interfering RNA (siRNA) inhibits the migration and invasion of NSCLC cells by mediating matrix metalloproteinases expression. To the best of our knowledge, this study is the first to report that PTTG1 promotes epidermal growth factor (EGF) induced the phosphorylation of LIN-11, Isl1 and MEC-3 protein domain kinase and cofilin, a critical step in cofilin recycling and actin polymerization. Additionally, EGF-induced Akt phosphorylation was suppressed through knockdown of PTTG1. Interestingly, miR-186 can modulate PTTG1 protein expression. As observed from the animal experiment in this study, knockdown of PTTG1 through siRNA and overexpression of miR-186 inhibited invasive activity of NSCLC cells toward the SCID mice lung. In summary, our in vitro and in vivo results indicate that PTTG1 modulated by miR-186 has an important function in NSCLC invasion/metastasis. This study identified both PTTG1 and miR-186 as potential anti-invasion targets for therapeutic intervention in NSCLC.
The early stage of formation of gas hydrates has recently attracted attention as amorphous intermediate gas hydrate structures have been observed, apparently contrary to a classical model of nucleation and some experimental observations. To date, essentially all reported molecular simulations of the nucleation of gas hydrates have been under constant temperature conditions, which does not consider the possible impacts of heat transfer on the nucleation processes. Here we show, using constant energy molecular simulations, that the nuclei at an early stage of the hydrate formation have relatively more crystalline order in comparison with those observed in previous isothermal (NPT or NVT) work. The current work suggests a more transient role for intermediate amorphous structures during hydrate nucleation, thereby providing a stronger link between molecular simulation and experimental observations. Our NVE results nevertheless support the two-step nucleation mechanism proposed in previous simulation studies under constant temperature conditions which features the initial formation of amorphous hydrate-like structures.
We present a molecular dynamics simulation study of the crystal growth of methane hydrates in the presence of model silica (SiO(2)) surfaces. The crystal growth under apparent steady-state conditions shows a clear preference for bulk solution. We observe rather disordered water arrangements very close to the silica surface within about 5 Å in both liquid and crystalline regions of the system. These disordered structures have dynamic and structural properties intermediate between those exhibited by molecules in bulk liquid and crystalline phases. The presence of methane molecules appears to help stabilize these structures. We observe that under appropriate conditions, the hydroxylated silica surfaces can serve as a source of methane molecules which can help promote hydrate growth near the surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.