The latest developments of bifunctional oxygen electrocatalysts for Zn–air batteries (ZABs) are comprehensively summarized and evaluated, laying special emphasis on the challenges, outlooks and directions of future research for the ZAB industry.
Rationale: Breast cancer preferentially develops osteolytic bone metastasis, which makes patients suffer from pain, fractures and spinal cord compression. Accumulating evidences have shown that exosomes play an irreplaceable role in pre-metastatic niche formation as a communication messenger. However, the function of exosomes secreted by breast cancer cells remains incompletely understood in bone metastasis of breast cancer. Methods: Mouse xenograft models and intravenous injection of exosomes were applied for analyzing the role of breast cancer cell-derived exosomes in vivo . Effects of exosomes secreted by the mildly metastatic MDA231 and its subline SCP28 with highly metastatic ability on osteoclasts formation were confirmed by TRAP staining, ELISA, microcomputed tomography, histomorphometric analyses, and pit formation assay. The candidate exosomal miRNAs for promoting osteoclastogenesis were globally screened by RNA-seq. qRT-PCR, western blot, confocal microscopy, and RNA interfering were performed to validate the function of exosomal miRNA. Results: Implantation of SCP28 tumor cells in situ leads to increased osteoclast activity and reduced bone density, which contributes to the formation of pre-metastatic niche for tumor cells. We found SCP28 cells-secreted exosomes are critical factors in promoting osteoclast differentiation and activation, which consequently accelerates bone lesion to reconstruct microenvironment for bone metastasis. Mechanistically, exosomal miR-21 derived from SCP28 cells facilitates osteoclastogenesis through regulating PDCD4 protein levels. Moreover, miR-21 level in serum exosomes of breast cancer patients with bone metastasis is significantly higher than that in other subpopulations. Conclusion: Our results indicate that breast cancer cell-derived exosomes play an important role in promoting breast cancer bone metastasis, which is associated with the formation of pre-metastatic niche via transferring miR-21 to osteoclasts. The data from patient samples further reflect the significance of miR-21 as a potential target for clinical diagnosis and treatment of breast cancer bone metastasis.
One key to malignant progression of pancreatic cancer (PC) is the acquired ability of tumour cells to escape immune-mediated lysis. Hypoxic microenvironment plays a causal role in PC metastasis. According to previous studies, hypoxia could induce the upregulation of HIF1A, ADAM10 and sMICA, leading to decreased NKG2D in NK cells and tumour cells escape from immune surveillance and NK cellmediated lysis. In the present study, in NK cells derived from high-HIF1A expression patients, the levels of internalization of MICA/B and NKG2D were obviously higher than those in low-HIF1A expression group; hypoxia dramatically upregulated the levels of sMICA culture supernatant of Panc-1 cells. Regarding the molecular mechanism, dysregulated circRNAs and miRNAs that might modulate HIF1Amediated immune escape were selected and examined for detailed functions. The expression of circ_0000977 could be induced by hypoxia, and circ_0000977 knockdown enhanced the killing effect of NK cells on PC cells under hypoxia through HIF1A and ADAM10. HIF1 and ADAM10 were direct downstream targets of miR-153; circ_0000977 served as a sponge for miR-153 to counteract miR-153mediated repression of HIF1 and ADAM10 mRNA through direct targeting in both 293T cells and Panc-1 cells. miR-153 inhibition exerted an opposing effect on HIF1A-mediated immune escape of PC cells to circ_0000977 knockdown; the effect of circ_0000977 knockdown were partially attenuated by miR-153 inhibition. In summary, circ_0000977/miR-153 axis modulates HIF1A-mediated immune escape of PC cells through miR-153 downstream targets HIF1A and ADAM10. We provided a novel mechanism of HIF1A-mediated immune escape of PC cells from the perspective of circRNAs-miRNA-mRNA axis. Abbreviations: Pancreatic cancer (PC); peripheral blood lymphocytes (PBLs); A Disintegrin and Metalloproteinase Domain 10 (ADAM10); MHC class I-related molecule A (MICA); soluble MICA (sMICA); membrane MICA (mMICA); Hypoxia-inducible factor 1-alpha (HI1FA); long non-coding RNAs (lncRNAs); non-coding RNAs (ncRNAs); natural killer (NK); Haematoxylin and eosin (H&E); Immunohistochemistry (IHC); natural killer group 2 member D (NKG2D);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.