Alcohol use disorder (AUD) is an important brain disease. It alters the brain structure. Recently, scholars tend to use computer vision based techniques to detect AUD. We collected 235 subjects, 114 alcoholic and 121 non-alcoholic. Among the 235 image, 100 images were used as training set, and data augmentation method was used. The rest 135 images were used as test set. Further, we chose the latest powerful technique-convolutional neural network (CNN) based on convolutional layer, rectified linear unit layer, pooling layer, fully connected layer, and softmax layer. We also compared three different pooling techniques: max pooling, average pooling, and stochastic pooling. The results showed that our method achieved a sensitivity of 96.88%, a specificity of 97.18%, and an accuracy of 97.04%. Our method was better than three state-of-the-art approaches. Besides, stochastic pooling performed better than other max pooling and average pooling. We validated CNN with five convolution layers and two fully connected layers performed the best. The GPU yielded a 149× acceleration in training and a 166× acceleration in test, compared to CPU.
Evaluated on a new non-redundant protein set with 224 chains, the method has 80.7% sensitivity and 82.9% specificity in the 5-fold cross-validation test. In addition, it predicts DNA-binding sites with 85.1% sensitivity and 85.3% specificity when tested on a dataset with 62 protein-DNA complexes. Compared with a recently published method, BindN+, our method predicts DNA-binding sites with a 7% better area under the receiver operating characteristic curve value when tested on the same dataset. Many important problems in cell biology require the dense non-linear interactions between functional modules be considered. Thus, our prediction method will be useful in detecting such complex interactions.
Fractal encoding method becomes an effective image compression method because of its high compression ratio and short decompressing time. But one problem of known fractal compression method is its high computational complexity and consequent long compressing time. To address this issue, in this paper, distance clustering in high dimensional sphere surface is applied to speed up the fractal compression method. Firstly, as a preprocessing strategy, an image is divided into blocks, which are mapped on high dimensional sphere surface. Secondly, a novel image matching method is presented based on distance clustering on high dimensional sphere surface. Then, § Corresponding author. This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited.
1740004-1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.