Lumbar spine segmentation is important to help doctors diagnose lumbar disc herniation (LDH) and patients’ rehabilitation treatment. In order to accurately segment the lumbar spine, a lumbar spine image segmentation algorithm based on improved Attention U-Net is proposed. The algorithm is based on Attention U-Net, the attention module based on multilevel feature map fusion is adopted, two residual modules are introduced instead of the original convolution blocks. a hybrid loss function is used for prediction during the training process, and finally, the image superposition process is realized. In this experiment, we expanded 420 lumbar MRI images of 180 patients to 1000 images and trained them by different algorithms, respectively, and accuracy, recall, and Dice similarity coefficient metrics were used to analyze these algorithms. The results show that compared with SVM, FCN, R-CNN, U-Net, and Attention U-Net models, the improved model achieved better results in all three evaluations, with 95.50%, 94.53%, and 95.01%, respectively, which proves the better performance of the proposed method for segmentation in lumbar disc and caudal vertebrae.
To realize the automatic symptom recognition and classification of MR images and improve the accuracy and efficiency of the diagnosis of lumbar intervertebral disc herniation (LDH), a method for lumbar intervertebral disc recognition and disease classification is proposed in this paper. The method mainly includes three steps: preprocessing, target segmentation, and symptom classification. Preprocessing is performed by noise reduction and interference removal methods for blurred images. The contour poles are used to determine the four points of the tail vertebra in order to reduce the wrong segmentation of the tail vertebra. A classification method based on five judgment indicators is proposed, which effectively improves the stability of disease diagnosis. The example verifies that the algorithm can accurately complete the target segmentation and the accuracy of symptom classification reaches the standard of professional doctors, which proves that the method has good robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.