The user equilibrium traffic assignment principle is very important in the traffic assignment problem. Mathematical programming models are designed to solve the user equilibrium problem in traditional algorithms. Recently, the Physarum shows the ability to address the user equilibrium and system optimization traffic assignment problems. However, the Physarum model are not efficient in real traffic networks with two-way traffic characteristics and multiple origin-destination pairs. In this article, a modified Physarum-inspired model for the user equilibrium problem is proposed. By decomposing traffic flux based on origin nodes, the traffic flux from different origin-destination pairs can be distinguished in the proposed model. The Physarum can obtain the equilibrium traffic flux when no shorter path can be discovered between each origin-destination pair. Finally, numerical examples use the Sioux Falls network to demonstrate the rationality and convergence properties of the proposed model.
In real applications, how to measure the uncertain degree of sensor reports before applying sensor data fusion is a big challenge. In this paper, in the frame of Dempster–Shafer evidence theory, a weighted belief entropy based on Deng entropy is proposed to quantify the uncertainty of uncertain information. The weight of the proposed belief entropy is based on the relative scale of a proposition with regard to the frame of discernment (FOD). Compared with some other uncertainty measures in Dempster–Shafer framework, the new measure focuses on the uncertain information represented by not only the mass function, but also the scale of the FOD, which means less information loss in information processing. After that, a new multi-sensor data fusion approach based on the weighted belief entropy is proposed. The rationality and superiority of the new multi-sensor data fusion method is verified according to an experiment on artificial data and an application on fault diagnosis of a motor rotor.
In real applications, sensors may work in complicated environments; thus, how to measure the uncertain degree of sensor reports before applying sensor data fusion is a big challenge. To address this issue, an improved belief entropy-based uncertainty management approach for sensor data fusion is proposed in this article. First, the sensor report is modeled as the body of evidence in Dempster-Shafer framework. Then, the uncertainty measure of each body of evidence is based on the subjective uncertainty represented as the evidence sufficiency and evidence importance, and the objective uncertainty measure is expressed as the improved belief entropy. Evidence modification of conflict sensor data is based on the proposed uncertainty management approach before evidence fusion with Dempster's rule of combination. Finally, the fusion result can be applied in real applications. A case study on sensor data fusion for fault diagnosis is presented to show the rationality of the proposed method.
Knowledge graphs (KGs) have been proven to be effective for improving the performance of recommender systems. KGs can store rich side information and relieve the data sparsity problem. There are many linked attributes between entity pairs (e.g., items and users) in KGs, which can be called multiplestep relation paths. Existing methods do not sufficiently exploit the information encoded in KGs. In this paper, we propose MRP2Rec to explore various semantic relations in multiple-step relation paths to improve recommendation performance. The knowledge representation learning approach is used in our method to learn and represent multiple-step relation paths, and they are further utilized to generate prediction lists by inner products in top-K recommendations. Experiments on two real-world datasets demonstrate that our model achieves higher performance compared with many state-of-the-art baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.