Lysine crotonylation (Kcr) is a newly identified histone modification that is associated with active transcription in mammalian cells. Here we report that the chromodomain Y-like transcription corepressor CDYL negatively regulates histone Kcr by acting as a crotonyl-CoA hydratase to convert crotonyl-CoA to β-hydroxybutyryl-CoA. We showed that the negative regulation of histone Kcr by CDYL is intrinsically linked to its transcription repression activity and functionally implemented in the reactivation of sex chromosome-linked genes in round spermatids and genome-wide histone replacement in elongating spermatids. Significantly, Cdyl transgenic mice manifest dysregulation of histone Kcr and reduction of male fertility with a decreased epididymal sperm count and sperm cell motility. Our study uncovers a biochemical pathway in the regulation of histone Kcr and implicates CDYL-regulated histone Kcr in spermatogenesis, adding to the understanding of the physiology of male reproduction and the mechanism of the spermatogenic failure in AZFc (Azoospermia Factor c)-deleted infertile men.
The results of this study support the hypothesis that the multiple loss of floral polymorphism in distylous P. oreodoxa is associated with unsatisfactory pollinator service, with homostyles benefiting from reproductive assurance as a result of autonomous self-pollination.
Methylation is a prevalent posttranscriptional modification of RNAs. However, whether mammalian microRNAs are methylated is unknown. Here, we show that the tRNA methyltransferase NSun2 methylates primary (pri-miR-125b), precursor (pre-miR-125b), and mature microRNA 125b (miR-125b) in vitro and in vivo. Methylation by NSun2 inhibits the processing of pri-miR-125b2 into pre-miR-125b2, decreases the cleavage of pre-miR-125b2 into miR-125, and attenuates the recruitment of RISC by miR-125, thereby repressing the function of miR-125b in silencing gene expression. Our results highlight the impact of miR-125b function via methylation by NSun2.
Baicalein, one of the major flavonoids found in Scutellaria baicalensis Georgi, displays neuroprotective effects on experimental models of Parkinson's disease (PD) in vitro and in vivo. Although the antioxidative and/or anti-inflammatory activity of baicalein likely contributes to these neuroprotective effects, other modes of action remain largely uncharacterized. In the present study, baicalein pretreatment significantly prevented cells from 6-hydroxydopamine (6-OHDA)-induced damage by attenuating cellular apoptosis. However, post-treatment with baicalein did not show any restorative effect against 6-OHDA-induced cellular damage. We found that baicalein increased transcriptional factor NF-E2-related factor 2 (Nrf2)/hemo oxygenase 1(HO-1) protein expression and decreased Kelch-like ECH-associated protein 1 (Keap1) in a time- and concentration-dependent manner in PC12 cells. In addition, baicalein induced Nrf2 nuclear translocation and enhanced antioxidant response element (ARE) transcriptional activity, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, we demonstrated that cytoprotective effects of baicalein could be attenuated by Nrf2 siRNA transfection and the HO-1 inhibitor zinc protoporphyrin (Znpp) as well as the proteasome inhibitor MG132. Furthermore, PKCα and AKT protein phosphorylation were up-regulated by baicalein pretreatment, and selective inhibitors targeted to PKC, PI3K, and AKT could block the cytoprotective effects of baicalein. Taken together, our results indicate that baicalein prevented PC12 cells from 6-OHDA-induced oxidative damage via the activation of Keap1/Nrf2/HO-1, and it also involves the PKCα and PI3K/AKT signaling pathway. Ultimately, the neuroprotective effects of baicalein may endue baicalein as a promising candidate for the prevention of PD.
Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we use phylogenomic analyses of nuclear and plastid genomes to investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. Innovation related to seed dispersal is implicated in triggering waves of continental radiations beginning with the rapid diversification of major lineages and resulting in unparalleled transformation of forest dynamics within 15 million years following the K-Pg extinction. We detect introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, which may have further amplified the diversification of white oaks across Eurasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.