In this study, a cooperative control method based on model predictive control and multiagent theory is proposed to control an interconnected air suspension system with three controllable structures of interconnection mode, damping, and vehicle height. The model predictive controller is constructed based on a discrete-time state-space model. The optimal interval for suspension force is obtained through solving cost functions while satisfying a set of constraints on controlled variables and thereby reducing the coupling complexity of a multivariable control system. Deliberative agents are involved in building cost functions of interconnection mode, vehicle height adjustment, and damping force, and the energy consumption control strategy is established to realize suspension force distribution with low energy consumption. Finally, the test results show that the proposed control method can significantly improve vehicle ride comfort and restrain rollover on the premise of ensuring energy efficiency. Compared with traditional control, the peak value of the sprung mass acceleration speed decreases by 70% and the peak value of the unsprung mass acceleration speed decreases by 75% under straight-driving condition. The roll angle decreases by 40% under the steering condition. As for the traditional control, they are skyhook, imitation skyhook, and PID-PWM control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.