A number of epidemiological and experimental studies have implicated the non-selective herbicide, paraquat, in the development of sporadic Parkinson's disease (PD). While preclinical research has focused mainly on elucidating the nigrostriatal effects of paraquat, relatively little data are available concerning non-motor brain systems and inflammatory immune processes (which have been implicated in PD). Hence, in the present study, we sought to take a multi-system approach to characterize the influence of paraquat upon extra-nigrostriatal brain regions, as well ascertain whether the impact of the pesticide might be enhanced in the context of chronic intermittent stressor exposure. Our findings support the contention that paraquat itself acted as a systemic stressor, with the pesticide increasing plasma corticosterone, as well as altering neurochemical activity in the locus coeruleus, paraventricular nucleus of the hypothalamus, nucleus accumbens, dorsal striatum, and central amygdala. However, with the important exception striatal dopamine turnover, the stressor treatment did not further augment these effects. Additionally, paraquat altered inter-cytokine correlations and, to a lesser extent, circulating cytokine levels, and concomitant stress exposure modulated some of these effects. Finally, paraquat provoked significant (albeit modest) reductions of sucrose preference and weight gain, hinting at possible anhendonic-like or sickness responses. These data suggest that, in addition to being a well known oxidative stress generator, paraquat can act as a systemic stressor affecting hormonal and neurochemical activity, but largely not interacting with a concomitant stressor regimen.
Approximately one-third of patients with major depressive disorders (MDDs) are resistant to current treatment methods, and the majority of cases relapse at some point during therapy. This has resulted in novel treatments being adopted, including subanesthetic doses of ketamine, which affects aberrant neuroplastic circuits, glutamatergic signaling, and the production of brain-derived neurotrophic factor. Ketamine rapidly relieves depressive symptoms in treatment-resistant major depressive disorder patients with effects that last for up to 2 weeks even after a single administration. However, it is also a drug with an abusive potential and can have marked side effects. Hence, this study aimed at enhancing the antidepressant-like effects of ketamine (allowing for lower dosing regimens) by coadministering magnesium hydroaspartate (Mg2+ normally affects the same receptors as ketamine) and also assessed whether an Mg2+-deficient diet would modify the impact of ketamine. It was found that a single 15 mg/kg dose of ketamine did indeed induce rapid antidepressant-like effects in the forced swim test but did not affect brain levels of the brain-derived neurotrophic factor. Contrary to our hypothesis, magnesium administration or deficiency did not influence the impact of ketamine on these outcomes. Thus, these data do not support the use of magnesium as an adjunct agent and instead suggest that further research involving other antidepressant and animal models is required to confirm the present findings.
Recently, the role of transcription factor myocyte enhancer factor 2 (MEF2) has prevailed as a pro-survival agent against neuronal apoptosis, promoter of neuronal development and key player in memory consolidation. The current study examines whether three different types of stressors, namely psychologically relevant, immune and chemical stress would differentially influence MEF2 expression within the hippocampus. The study examines MEF2 associations to alterations in neurogenesis and performance in cognitive task (Y-maze). Our findings show non-significant differences of MEF2 expression within animals under psychologically relevant stress and those given immune insults. However, animals treated with environmental toxin paraquat showed declines in MEF2 levels within subgroups that scored low on the cognitive task. Moreover, we report novel findings of lowered neurogenesis within the hippocampus as a direct result of administration of environmental toxin and immune stressor. Our results add to the growing MEF2 body of work and open the door to future exploration.iii | P a g e
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.