The Ca2+ and Ba2+ solubility on Nd3+ sites in new layered perovskite NdBaInO4 mixed oxide ionic and hole conductor and their effect on the oxide ion conductivity of NdBaInO4 were investigated. Among the alkaline earth metal cations Ca2+, Sr2+, and Ba2+, Ca2+ was shown to be the optimum acceptor–dopant for Nd3+ in NdBaInO4 showing the largest substitution for Nd3+ up to 20% and leading to oxide ion conductivities ∼3 × 10–4–1.3 × 10–3 s/cm within 600–800 °C on Nd0.8Ca0.2BaInO3.9 composition, exceeding the most-conducting Nd0.9Sr0.1BaInO3.95 in the Sr-doped NdBaInO4. Energetics of defect formation and oxygen vacancy migration in NdBaInO4 were computed through the atomistic static-lattice simulation. The solution energies of Ca2+/Sr2+/Ba2+ on the Nd3+ site in NdBaInO4 for creating the oxygen vacancies confirm the predominance of Ca2+ on the substitution for Nd3+ and enhancement of the oxygen vacancy conductivity over the larger Sr2+ and Ba2+. The electronic defect formation energies indicate that the p-type conduction in a high partial oxygen pressure range of the NdBaInO4-based materials is from the oxidation reaction forming the holes centered on O atoms. Both the static lattice and molecular dynamic simulations indicate two-dimensional oxygen vacancy migration within the perovskite slab boundaries for the acceptor-doped NdBaInO4. Molecular dynamic simulations on the Ca-doped NdBaInO4 specify two major vacancy migration events, respectively, via one intraslab path along the b axis and one interslab path along the c axis. These paths are composed by two terminal oxygen sites within the perovskite slab boundaries.
In this work, a series of branched polycaprolactone (BPCL) samples with different ε-caprolactone (CL) chain lengths were synthesized and used to toughen poly (lactic acid) (PLA). The spherical structure increased the free volume, facilitating the free movement of the PLA chain segment and increasing the ductility. In addition, the hydrogen bonds between the multiterminal hydroxyl group of BPCL x and PLA improved the interaction between them. The glass-transition temperatures (T g ) and crystallization temperatures (T c ) of the blends were significantly lower than those of PLA, and these temperatures increased with the chain length of polycaprolactone. BPCL x increased the crystallization rate of PLA through heterogeneous nucleation. A longer chain length of CL increased the mutual entanglement in the blends, reduced the hydrogen bonding between BPCL x and PLA, and increased the entanglement of BPCL x chains. When the chain length of CL was 6, the impact strength and elongation at break of the PLA/BPCL blends exhibited an increase of 151.72 and 465.8%, respectively, as compared with PLA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.