In recent biomedical studies, omics profiling has been extensively conducted on various types of mental disorders. In most of the existing analyses, a single type of mental disorder and a single type of omics measurement are analyzed. In the study of other complex diseases, integrative analysis, both vertical and horizontal integration, has been conducted and shown to bring significantly new insights into disease etiology, progression, biomarkers, and treatment. In this article, we showcase the applicability of integrative analysis to mental disorders. In particular, the horizontal integration of bipolar disorder and schizophrenia and the vertical integration of gene expression and copy number variation data are conducted. The analysis is based on the sparse principal component analysis, penalization, and other advanced statistical techniques. In data analysis, integration leads to biologically sensible findings, including the disease-related gene expressions, copy number variations, and their associations, which differ from the “benchmark” analysis. Overall, this study suggests the potential of integrative analysis in mental disorder research.
The analysis of gene expression data has been playing a pivotal role in recent biomedical research. For gene expression data, network analysis has been shown to be more informative and powerful than individual-gene and geneset-based analysis. Despite promising successes, with the high dimensionality of gene expression data and often low sample sizes, network construction with gene expression data is still often challenged. In recent studies, a prominent trend is to conduct multidimensional profiling, under which data are collected on gene expressions as well as their regulators (copy number variations, methylation, microRNAs, SNPs, etc). With the regulation relationship, regulators contain information on gene expressions and can potentially assist in estimating their characteristics. In this study, we develop an assisted graphical model (AGM) approach, which can effectively use information in regulators to improve the estimation of gene expression graphical structure. The proposed approach has an intuitive formulation and can adaptively accommodate different regulator scenarios. Its consistency properties are rigorously established. Extensive simulations and the analysis of a breast cancer gene expression data set demonstrate the practical effectiveness of the AGM.
Prognosis modeling plays an important role in cancer studies. With the development of omics profiling, extensive research has been conducted to search for prognostic markers for various cancer types. However, many of the existing studies share a common limitation by only focusing on a single cancer type and suffering from a lack of sufficient information. With potential molecular similarity across cancer types, one cancer type may contain information useful for the analysis of other types. The integration of multiple cancer types may facilitate information borrowing so as to more comprehensively and more accurately describe prognosis. In this study, we conduct marginal and joint integrative analysis of multiple cancer types, effectively introducing integration in the discovery process. For accommodating high dimensionality and identifying relevant markers, we adopt the advanced penalization technique which has a solid statistical ground. Gene expression data on nine cancer types from The Cancer Genome Atlas (TCGA) are analyzed, leading to biologically sensible findings that are different from the alternatives. Overall, this study provides a novel venue for cancer prognosis modeling by integrating multiple cancer types.
A three-wavelength photoelasticity method is proposed to simplify the optical setup and speed up data acquisition. By recording six intensity images with circularly polarized illuminations of three close wavelengths, the phase retardation and corresponding inner stress can be computed accurately with a correspondingly developed computational algorithm. Since the mechanical rotations of wave plates and polarizers required by classic photoelasticity techniques are avoided, the data acquisition of this proposed method is very speedy, and measurement of a dynamic sample can be achieved with a very simple and compact optical setup. Besides theoretical analyses, numerical and experimental evidences are also used to confirm the feasibility of this suggested three-wavelength digital photoelasticity method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.