Aptamers are oligonucleotide sequences with a length of about 25−80 bases which have abilities to bind to specific target molecules that rival those of monoclonal antibodies. They are attracting great attention in diverse clinical translations on account of their various advantages, including prolonged storage life, little batch-to-batch differences, very low immunogenicity, and feasibility of chemical modifications for enhancing stability, prolonging the half-life in serum, and targeted delivery. In this Review, we demonstrate the emerging aptamer discovery technologies in developing advanced techniques for producing aptamers with high performance consistently and efficiently as well as requiring less cost and resources but offering a great chance of success. Further, the diverse modifications of aptamers for therapeutic applications including therapeutic agents, aptamer−drug conjugates, and targeted delivery materials are comprehensively summarized.
Nucleic acid aptamers have minimal immunogenicity, high chemical synthesis production, low cost and high chemical stability when compared with antibodies. However, the susceptibility to nuclease degradation, rapid excretion through renal filtration and insufficient binding affinity hindered their development as drug candidates for therapeutic applications. In this review, we will discuss methods to conquer these challenges and highlight recent developments of chemical modifications and technological advances that may enable early aptamers to be translated into clinical therapeutics.
Several virtual screening models are proposed to screen small molecules only targeting primary miRNAs without selectivity. Few attempts have been made to develop virtual screening strategies for discovering small molecules targeting mature miRNAs. Mature miRNAs and their specific target mRNA can form unique functional loops during argonaute (AGO)‐mediated miRNA–mRNA interactions, which may serve as potential targets for small‐molecule drug discovery. Thus, a loop‐based and AGO‐incorporated virtual screening model is constructed for targeting the loops. The previously published studies have found that miR‐214 can target ATF4 to inhibit osteoblastic bone formation, whereas miR‐214 can target TRAF3 to promote osteoclast activity. By using the virtual model, the top ten candidate small molecules targeting miR‐214‐ATF4 mRNA interactions and top ten candidate small molecules targeting miR‐214‐TRAF3 mRNA interactions are selected, respectively. Based on both in vitro and in vivo data, one small molecule can target miR‐214‐ATF4 mRNA to promote ATF4 protein expression and enhance osteogenic potential, whereas one small molecule can target miR‐214‐TRAF3 mRNA to promote TRAF3 protein expression and inhibit osteoclast activity. These data indicate that the loop‐based and AGO‐incorporated virtual screening model can help to obtain small molecules specifically targeting miRNA–mRNA interactions to rescue bone phenotype in genetically modified mice.
Sclerostin negatively regulates bone formation by antagonizing Wnt signalling. An antibody targeting sclerostin for the treatment of postmenopausal osteoporosis was approved by the U.S. Food and Drug Administration, with a boxed warning for cardiovascular risk. Here we demonstrate that sclerostin participates in protecting cardiovascular system and inhibiting bone formation via different loops. Loop3 deficiency by genetic truncation could maintain sclerostin’s protective effect on the cardiovascular system while attenuating its inhibitory effect on bone formation. We identify an aptamer, named aptscl56, which specifically targets sclerostin loop3 and use a modified aptscl56 version, called Apc001PE, as specific in vivo pharmacologic tool to validate the above effect of loop3. Apc001PE has no effect on aortic aneurysm and atherosclerotic development in ApoE−/− mice and hSOSTki.ApoE−/− mice with angiotensin II infusion. Apc001PE can promote bone formation in hSOSTki mice and ovariectomy-induced osteoporotic rats. In summary, sclerostin loop3 cannot participate in protecting the cardiovascular system, but participates in inhibiting bone formation.
Breast cancer is one of the most common causes of cancer related deaths in women. Currently, with the development of early detection, increased social awareness and kinds of treatment options, survival rate has improved in nearly every type of breast cancer patients. However, about one third patients still have increased chances of recurrence within five years and the five-year relative survival rate in patients with metastasis is less than 30%. Breast cancer contains multiple subtypes. Each subtype could cause distinct clinical outcomes and systemic interventions. Thereby, new targeted therapies are of particular importance to solve this major clinical problem. Aptamers, often termed “chemical antibodies”, are functionally similar to antibodies and have demonstrated their superiority of recognizing target with high selectivity, affinity and stability. With these intrinsic properties, aptamers have been widely studied in cancer biology and some are in clinical trials. In this review, we will firstly discuss about the global impacts and mechanisms of breast cancer, then briefly highlight applications of aptamers that have been developed for breast cancer and finally summarize various challenges in clinical translation of aptamers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.