To successfully colonize the plants, the pathogenic microbes secrete a mass of effector proteins which manipulate host immunity. Apple valsa canker is a destructive disease caused by the weakly parasitic fungus Valsa mali. A previous study indicated that the V. mali effector protein 1 (VmEP1) is an essential virulence factor. However, the pathogenic mechanism of VmEP1 in V. mali remains poorly understood. In this study, we found that the apple (Malus domestica) pathogenesis-related 10 proteins (MdPR10) are the virulence target of VmEP1 using a yeast two-hybrid screening. By bimolecular fluorescence (BiFC) and coimmunoprecipitation (Co-IP), we confirmed that the VmEP1 interacts with MdPR10 in vivo. Silencing of MdPR10 notably enhanced the V. mali infection, and overexpression of MdPR10 markedly reduced its infection, which corroborates its positive role in plant immunity against V. mali. Furthermore, we showed that the co-expression of VmEP1 with MdPR10 compromised the MdPR10-mediated resistance to V. mali. Taken together, our results revealed a mechanism by which a V. mali effector protein suppresses the host immune responses by interfering with the MdPR10-mediated resistance to V. mali during the infection.
The K homology (KH) repeat is an RNA‐binding motif that exists in various proteins, some of which participate in plant growth. However, the function of KH domain‐containing proteins in plant defence is still unclear. In this study, we found that a KH domain‐containing protein in apple ( Malus domestica ), HEN4‐like (MdKRBP4), is involved in the plant immune response. Silencing of MdKRBP4 compromised reactive oxygen species (ROS) production and enhanced the susceptibility of apple to Valsa mali , whereas transient overexpression of MdKRBP4 stimulated ROS accumulation in apple leaves, indicating that MdKRBP4 is a positive immune regulator. Additionally, MdKRBP4 was proven to interact with the VmEP1 effector secreted by V. mali , which led to decreased accumulation of MdKRBP4. Coexpression of MdKRBP4 with VmEP1 inhibited cell death and ROS production induced by MdKRBP4 in Nicotiana benthamiana . These results indicate that MdKRBP4 functions as a novel positive regulatory factor in plant immunity in M. domestica and is a virulence target of the V. mali effector VmEP1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.