Sensing and mapping its surroundings is an essential requirement for a mobile robot. Geometric maps endow robots with the capacity of basic tasks, e.g., navigation. To co-exist with human beings in indoor scenes, the need to attach semantic information to a geometric map, which is called a semantic map, has been realized in the last two decades. A semantic map can help robots to behave in human rules, plan and perform advanced tasks, and communicate with humans on the conceptual level. This survey reviews methods about semantic mapping in indoor scenes. To begin with, we answered the question, what is a semantic map for mobile robots, by its definitions. After that, we reviewed works about each of the three modules of semantic mapping, i.e., spatial mapping, acquisition of semantic information, and map representation, respectively. Finally, though great progress has been made, there is a long way to implement semantic maps in advanced tasks for robots, thus challenges and potential future directions are discussed before a conclusion at last.
Environmental information plays an important role in deep reinforcement learning (DRL). However, many algorithms do not pay much attention to environmental information. In multi-agent reinforcement learning decision-making, because agents need to make decisions combined with the information of other agents in the environment, this makes the environmental information more important. To prove the importance of environmental information, we added environmental information to the algorithm. We evaluated many algorithms on a challenging set of StarCraft II micromanagement tasks. Compared with the original algorithm, the standard deviation (except for the VDN algorithm) was smaller than that of the original algorithm, which shows that our algorithm has better stability. The average score of our algorithm was higher than that of the original algorithm (except for VDN and COMA), which shows that our work significantly outperforms existing multi-agent RL methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.