The acoustic emission (AE) characteristics of rock during loading can reflect the law of crack propagation and evolution in the rock. In order to study the fracture mode in the process of rock fracture, the AE characteristics and crack types of red sandstone during fracture were investigated by conducting Brazilian indirect tensile tests (BITT), direct shear tests (DST), and uniaxial compression tests (UCT). The evolution law of AE event rate, RA and AF values, and the distribution law of RA–AF data of red sandstone samples in three test types were analyzed. Based on the kernel density estimation (KDE) function and the coupling AE parameters (RA–AF values) in DST and BITT, the relatively objective dividing line for classifying tensile and shear cracks was discussed, and the dividing line was applied to the analysis of fracture source evolution and the failure precursor of red sandstone. The results show that the dividing line for classifying tensile and shear cracks of red sandstone is AF = 93RA + 75. Under uniaxial compression loading, the fracture source of red sandstone is primarily shear source in the initial phase of loading and tensile source in the critical failure phase, and the number is far greater than shear source. K = AF/(93RA + 75) can be defined as the AE parameter index, and its coefficient of variation CV (k) can be used as the failure judgment index of red sandstone. When CV (k) < 1, it can be considered that red sandstone enters the instability failure phase.
Acidic fluids will cause rock erosion and further endanger the safety of rock engineering. To explore the aging characteristics of the mechanical damage under acid condition, diorite specimens were saturated in neutral water and acid solutions with pH values of 3 and 5 for 49 days. The masses and sizes of the specimens and the pH values of the acidic solution were tracked and measured. Besides, the specimens before and after saturations were observed by an electron microscope scanner. Meanwhile, triaxial compression tests were carried out under neutral water, pH 5 and pH 3 hydrochloric acid solutions, respectively. The mass damage features and mechanical properties of diorite specimens saturated in solutions with different pH values were analyzed. The results show: 1) after acidic saturation, the original lamellar structures and crystal forms were spongy or flocculent. The structure loosened and the boundary between layers became fuzzy. Meanwhile, the number of micro-cracks and micro-pores increased, which weakened the macro-mechanical performances of diorite; 2) the acid condition with pH value of 3 could be used to simulate the long-term effect of the weakly acidic environment in nature; 3) internal friction angle of diorite was more sensitive to acidic solutions than its cohesion; 4) at the initial stage of saturation, diorite broke rapidly. With increasing saturation time, the damage rate slowed down and finally stabilized. The established damage strength model considering acidification could properly describe the test results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.