Circular RNA (circRNA) is a kind of novel endogenous noncoding RNA formed through back-splicing of mRNA precursor. The biogenesis, degradation, nucleus–cytoplasm transport, location, and even translation of circRNA are controlled by RNA-binding proteins (RBPs). Therefore, circRNAs and the chaperoned RBPs play critical roles in biological functions that significantly contribute to normal animal development and disease. In this review, we systematically characterize the possible molecular mechanism of circRNA–protein interactions, summarize the latest research on circRNA–protein interactions in muscle development and myocardial disease, and discuss the future application of circRNA in treating muscle diseases. Finally, we provide several valid prediction methods and experimental verification approaches. Our review reveals the significance of circRNAs and their protein chaperones and provides a reference for further study in this field.
Insulin‐like growth factor 2 mRNA‐binding protein 1 (IGF2BP1) plays essential roles in the proliferation of skeletal muscle satellite cells (MuSCs). Increasing evidence has shown that IGF2BP1 regulates the expression of noncoding RNAs and mRNAs. However, the related molecular network remains to be fully understood. Therefore, we performed RNA sequencing and analyzed the microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and mRNAs differentially expressed in goat MuSCs treated with IGF2BP1 overexpressing and empty vectors. A total of 36 miRNAs, 59 lncRNAs, and 44 mRNAs were differentially expressed caused by IGF2BP1. Expectedly, they were enriched in muscle development‐related Rap1, PI3K‐AKT, and FoxO signaling pathways. Finally, we constructed a lncRNA‐miRNA‐mRNA interaction network containing 30 lncRNAs, 15 miRNAs, and 34 mRNAs, in which several miRNAs, including miR‐133a‐3p, miR‐204‐5p, miR‐125a‐3p, miR‐145‐3p, and miR‐423‐5p, relate with cell growth and participate in muscle development. Overall, we constructed an IGF2BP1‐related network, which provides new insight into the myogenic proliferation of goat.
AbstractmiRNAs are well known to be gene repressors. A newly identified class of miRNAs termed nuclear activating miRNAs (NamiRNAs), transcribed from miRNA loci that exhibit enhancer features, promote gene expression via binding to the promoter and enhancer marker regions of the target genes. Meanwhile, activated enhancers produce endogenous non-coding RNAs (named enhancer RNAs, eRNAs) to activate gene expression. During chromatin looping, transcribed eRNAs interact with NamiRNAs through enhancer-promoter interaction to perform similar functions. Here, we review the functional differences and similarities between eRNAs and NamiRNAs in myogenesis and disease. We also propose models demonstrating their mutual mechanism and function. We conclude that eRNAs are active molecules, transcriptional regulators, and partners of NamiRNAs, rather than mere RNAs produced during enhancer activation.
Muscle is one of the most critical organs for mammals, which governs multiple movement and physiological functions. Circular RNA (circRNA) is a kind of novel endogenous RNA without 5'-Caps and 3'-poly(A) structures formed by pre-mRNA's back-splicing. RNA binding proteins (RBPs) control the production and degradation of circRNA, help nucleus-cytoplasm transport and locate circRNA, and regulate circRNA translation. Therefore, circRNAs and the chaperoned RBPs play critical roles in muscle growth, development, and disease progression. In this review, we systematically characterize the possible molecular mechanism of circRNA-protein interactions. Also, we summarize the latest researches on circRNA-protein interactions in muscle development and diseases. Besides, we provide several valid prediction methods and experimental verification approaches. Our review reveals the importance of circRNAs and their protein chaperones and provides a reference for further study in this field.
The proliferation and differentiation of mammalian skeletal muscle satellite cells (MuSCs) are highly complicated. Apart from the regulatory signaling cascade driven by the protein-coding genes, non-coding RNAs such as microRNAs (miRNA) and circular RNAs (circRNAs) play essential roles in this biological process. However, circRNA functions in MuSCs proliferation and differentiation remain largely to be elucidated. Here, we screened for an exonic circTCF4 based on our previous RNA-Seq data, specifically expressed during the development of the longest dorsal muscle in goats. Subsequently, the circular structure and whole sequence of circTCF4 were verified using Sanger sequencing. Besides, circTCF4 was spatiotemporally expressed in multiple tissues from goats but strikingly enriched in muscles. Furthermore, circTCF4 suppressed MuSCs proliferation and differentiation, independent of AGO2 binding. Finally, we conducted Poly(A) RNA-Seq using cells treated with small interfering RNA targeting circTCF4 and found that circTCF4 would affect multiple signaling pathways, including the insulin signaling pathway and AMPK signaling pathway related to muscle differentiation. Our results provide additional solid evidence for circRNA regulating skeletal muscle formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.