Early prediction of grain yield helps scientists to make better breeding decisions for wheat. Use of machine learning (ML) methods for fusion of unmanned aerial vehicle (UAV)-based multi-sensor data can improve the prediction accuracy of crop yield. For this, five ML algorithms including Cubist, support vector machine (SVM), deep neural network (DNN), ridge regression (RR) and random forest (RF) were used for multi-sensor data fusion and ensemble learning for grain yield prediction in wheat. A set of thirty wheat cultivars and breeding lines were grown under three irrigation treatments i.e., light, moderate and high irrigation treatments to evaluate the yield prediction capabilities of a low-cost multi-sensor (RGB, multi-spectral and thermal infrared) UAV platform. Multi-sensor data fusion-based yield prediction showed higher accuracy compared to individual-sensor data in each ML model. The coefficient of determination ( R 2 ) values for Cubist, SVM, DNN and RR models regarding grain yield prediction were observed from 0.527 to 0.670. Moreover, the results of ensemble learning through integrating the above models illustrated further increase in accuracy. The predictions of ensemble learning showed high R 2 values up to 0.692, which was higher as compared to individual ML models across the multi-sensor data. Root mean square error (RMSE), residual prediction deviation (RPD) and ratio of prediction performance to inter-quartile range (RPIQ) were calculated to be 0.916 t ha −1 , 1.771 and 2.602, respectively. The results proved that low altitude UAV-based multi-sensor data can be used for early grain yield prediction using data fusion and an ensemble learning framework with high accuracy. This high-throughput phenotyping approach is valuable for improving the efficiency of selection in large breeding activities. Supplementary Information The online version contains supplementary material available at 10.1007/s11119-022-09938-8.
Grain yield is increasingly affected by climate factors such as drought and heat. To develop resilient and high-yielding cultivars, high-throughput phenotyping (HTP) techniques are essential for precise decisions in wheat breeding. The ability of unmanned aerial vehicle (UAV)-based multispectral imaging and ensemble learning methods to increase the accuracy of grain yield prediction in practical breeding work is evaluated in this study. For this, 211 winter wheat genotypes were planted under full and limited irrigation treatments, and multispectral data were collected at heading, flowering, early grain filling (EGF), and mid-grain filling (MGF) stages. Twenty multispectral vegetation indices (VIs) were estimated, and VIs with heritability greater than 0.5 were selected to evaluate the models across the growth stages under both irrigation treatments. A framework for ensemble learning was developed by combining multiple base models such as random forest (RF), support vector machine (SVM), Gaussian process (GP), and ridge regression (RR). The R2 values between VIs and grain yield between for individual base models were ranged from 0.468 to 0.580 and 0.537 to 0.598 for grain yield prediction in full and limited irrigation treatments across growth stages, respectively. The prediction results of ensemble models were ranged from 0.491 to 0.616 and 0.560 to 0.616 under full and limited irrigation treatments respectively, and were higher than that of the corresponding base learners. Moreover, the grain yield prediction results were observed high at mid grain filling stage under both full (R2 = 0.625) and limited (R2 = 0.628) irrigation treatments through ensemble learning based stacking of four base learners. Further improvements in ensemble learning models can accelerate the use of UAV-based multispectral data for accurate predictions of complex traits like grain yield in wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.